Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57534 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}^{2}$ 0.6559 0.8243 0.7957 [X:[1.6157], M:[0.3843, 0.6901, 1.1529, 0.8471, 0.7294, 0.8471, 0.7294, 1.2314], q:[0.8667, 0.749], qb:[0.4432, 0.4039], phi:[0.3843]] [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [-2, -4], [0, 3], [2, -5], [0, 2]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.07 + 2*t^2.188 + 2*t^2.541 + 2*t^3.576 + 2*t^3.694 + t^4.141 + 2*t^4.259 + 3*t^4.376 + 2*t^4.612 + 4*t^4.729 + t^4.847 + 3*t^5.082 + 2*t^5.647 + 5*t^5.765 + 2*t^5.882 - 3*t^6. + 2*t^6.118 + t^6.211 + 3*t^6.235 + 2*t^6.329 + 3*t^6.447 + 4*t^6.564 + 2*t^6.682 + 4*t^6.8 + 6*t^6.918 + 3*t^7.153 + 6*t^7.271 + t^7.388 - 2*t^7.506 + 3*t^7.624 + 2*t^7.717 + 5*t^7.835 + 6*t^7.953 - t^8.07 - 4*t^8.188 + t^8.282 + 5*t^8.306 + 2*t^8.399 + 2*t^8.424 + 3*t^8.517 - 6*t^8.541 + 4*t^8.635 + 7*t^8.753 + 3*t^8.777 + 4*t^8.87 + 6*t^8.988 - t^4.153/y - t^6.223/y - (2*t^6.341)/y - t^6.694/y + (2*t^7.259)/y + t^7.376/y + (3*t^7.612)/y + (4*t^7.729)/y + (2*t^7.965)/y + (2*t^8.082)/y - t^8.294/y - (2*t^8.411)/y - (3*t^8.529)/y + (2*t^8.647)/y + (5*t^8.765)/y + (2*t^8.882)/y - t^4.153*y - t^6.223*y - 2*t^6.341*y - t^6.694*y + 2*t^7.259*y + t^7.376*y + 3*t^7.612*y + 4*t^7.729*y + 2*t^7.965*y + 2*t^8.082*y - t^8.294*y - 2*t^8.411*y - 3*t^8.529*y + 2*t^8.647*y + 5*t^8.765*y + 2*t^8.882*y t^2.07/g2^7 + (g1^2*t^2.188)/g2^5 + t^2.188/(g1^2*g2^4) + 2*g2^3*t^2.541 + t^3.576/g1^2 + (g1^2*t^3.576)/g2 + 2*g2^2*t^3.694 + t^4.141/g2^14 + (g1^2*t^4.259)/g2^12 + t^4.259/(g1^2*g2^11) + (g1^4*t^4.376)/g2^10 + t^4.376/g2^9 + t^4.376/(g1^4*g2^8) + (2*t^4.612)/g2^4 + (2*g1^2*t^4.729)/g2^2 + (2*t^4.729)/(g1^2*g2) + g2*t^4.847 + 3*g2^6*t^5.082 + (g1^2*t^5.647)/g2^8 + t^5.647/(g1^2*g2^7) + (g1^4*t^5.765)/g2^6 + (3*t^5.765)/g2^5 + t^5.765/(g1^4*g2^4) + (g1^2*t^5.882)/g2^3 + t^5.882/(g1^2*g2^2) - 3*t^6. + g1^2*g2^2*t^6.118 + (g2^3*t^6.118)/g1^2 + t^6.211/g2^21 + 3*g2^5*t^6.235 + (g1^2*t^6.329)/g2^19 + t^6.329/(g1^2*g2^18) + (g1^4*t^6.447)/g2^17 + t^6.447/g2^16 + t^6.447/(g1^4*g2^15) + (g1^6*t^6.564)/g2^15 + (g1^2*t^6.564)/g2^14 + t^6.564/(g1^2*g2^13) + t^6.564/(g1^6*g2^12) + (2*t^6.682)/g2^11 + (2*g1^2*t^6.8)/g2^9 + (2*t^6.8)/(g1^2*g2^8) + (2*g1^4*t^6.918)/g2^7 + (2*t^6.918)/g2^6 + (2*t^6.918)/(g1^4*g2^5) + t^7.153/g1^4 + (g1^4*t^7.153)/g2^2 + t^7.153/g2 + 3*g1^2*g2*t^7.271 + (3*g2^2*t^7.271)/g1^2 + g2^4*t^7.388 - g1^2*g2^6*t^7.506 - (g2^7*t^7.506)/g1^2 + 3*g2^9*t^7.624 + (g1^2*t^7.717)/g2^15 + t^7.717/(g1^2*g2^14) + (g1^4*t^7.835)/g2^13 + (3*t^7.835)/g2^12 + t^7.835/(g1^4*g2^11) + (g1^6*t^7.953)/g2^11 + (2*g1^2*t^7.953)/g2^10 + (2*t^7.953)/(g1^2*g2^9) + t^7.953/(g1^6*g2^8) + (g1^4*t^8.07)/g2^8 - (3*t^8.07)/g2^7 + t^8.07/(g1^4*g2^6) - (2*g1^2*t^8.188)/g2^5 - (2*t^8.188)/(g1^2*g2^4) + t^8.282/g2^28 + (g1^4*t^8.306)/g2^3 + (3*t^8.306)/g2^2 + t^8.306/(g1^4*g2) + (g1^2*t^8.399)/g2^26 + t^8.399/(g1^2*g2^25) + g1^2*t^8.424 + (g2*t^8.424)/g1^2 + (g1^4*t^8.517)/g2^24 + t^8.517/g2^23 + t^8.517/(g1^4*g2^22) - 6*g2^3*t^8.541 + (g1^6*t^8.635)/g2^22 + (g1^2*t^8.635)/g2^21 + t^8.635/(g1^2*g2^20) + t^8.635/(g1^6*g2^19) + (g1^8*t^8.753)/g2^20 + (g1^4*t^8.753)/g2^19 + (3*t^8.753)/g2^18 + t^8.753/(g1^4*g2^17) + t^8.753/(g1^8*g2^16) + 3*g2^8*t^8.777 + (2*g1^2*t^8.87)/g2^16 + (2*t^8.87)/(g1^2*g2^15) + (2*g1^4*t^8.988)/g2^14 + (2*t^8.988)/g2^13 + (2*t^8.988)/(g1^4*g2^12) - t^4.153/(g2*y) - t^6.223/(g2^8*y) - (g1^2*t^6.341)/(g2^6*y) - t^6.341/(g1^2*g2^5*y) - (g2^2*t^6.694)/y + (g1^2*t^7.259)/(g2^12*y) + t^7.259/(g1^2*g2^11*y) + t^7.376/(g2^9*y) + (3*t^7.612)/(g2^4*y) + (2*g1^2*t^7.729)/(g2^2*y) + (2*t^7.729)/(g1^2*g2*y) + (g1^2*g2^3*t^7.965)/y + (g2^4*t^7.965)/(g1^2*y) + (2*g2^6*t^8.082)/y - t^8.294/(g2^15*y) - (g1^2*t^8.411)/(g2^13*y) - t^8.411/(g1^2*g2^12*y) - (g1^4*t^8.529)/(g2^11*y) - t^8.529/(g2^10*y) - t^8.529/(g1^4*g2^9*y) + (g1^2*t^8.647)/(g2^8*y) + t^8.647/(g1^2*g2^7*y) + (g1^4*t^8.765)/(g2^6*y) + (3*t^8.765)/(g2^5*y) + t^8.765/(g1^4*g2^4*y) + (g1^2*t^8.882)/(g2^3*y) + t^8.882/(g1^2*g2^2*y) - (t^4.153*y)/g2 - (t^6.223*y)/g2^8 - (g1^2*t^6.341*y)/g2^6 - (t^6.341*y)/(g1^2*g2^5) - g2^2*t^6.694*y + (g1^2*t^7.259*y)/g2^12 + (t^7.259*y)/(g1^2*g2^11) + (t^7.376*y)/g2^9 + (3*t^7.612*y)/g2^4 + (2*g1^2*t^7.729*y)/g2^2 + (2*t^7.729*y)/(g1^2*g2) + g1^2*g2^3*t^7.965*y + (g2^4*t^7.965*y)/g1^2 + 2*g2^6*t^8.082*y - (t^8.294*y)/g2^15 - (g1^2*t^8.411*y)/g2^13 - (t^8.411*y)/(g1^2*g2^12) - (g1^4*t^8.529*y)/g2^11 - (t^8.529*y)/g2^10 - (t^8.529*y)/(g1^4*g2^9) + (g1^2*t^8.647*y)/g2^8 + (t^8.647*y)/(g1^2*g2^7) + (g1^4*t^8.765*y)/g2^6 + (3*t^8.765*y)/g2^5 + (t^8.765*y)/(g1^4*g2^4) + (g1^2*t^8.882*y)/g2^3 + (t^8.882*y)/(g1^2*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55645 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ 0.6741 0.8576 0.7861 [X:[1.6169], M:[0.3831, 0.6818, 1.1493, 0.8507, 0.724, 0.8507, 0.724], q:[0.8718, 0.7451], qb:[0.4464, 0.4042], phi:[0.3831]] t^2.045 + 2*t^2.172 + t^2.299 + 2*t^2.552 + 2*t^3.575 + t^3.701 + t^4.091 + 2*t^4.217 + 4*t^4.344 + 2*t^4.471 + 3*t^4.597 + 4*t^4.724 + 3*t^4.851 + 3*t^5.104 + 2*t^5.62 + 4*t^5.747 + 2*t^5.873 - 2*t^6. - t^4.149/y - t^4.149*y detail