Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55682 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ 0.878 1.0676 0.8224 [X:[], M:[0.7394], q:[0.6303, 0.6303, 0.6303], qb:[0.6303, 0.6303, 0.6303], phi:[0.5545]] [X:[], M:[[0, -4, -4, 0]], q:[[-1, 4, 4, 0], [1, 0, 0, 0], [0, 4, 4, -1]], qb:[[0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 1]], phi:[[0, -3, -3, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$ . -22 t^2.22 + t^3.33 + 14*t^3.78 + t^4.44 + 21*t^5.45 + t^5.55 - 22*t^6. + 2*t^6.65 + 14*t^7.11 + 90*t^7.56 - 14*t^7.66 + t^7.76 - 21*t^8.12 - t^8.22 + 21*t^8.77 + 2*t^8.87 - t^4.66/y - t^6.88/y + t^7.34/y - t^7.99/y + t^8.45/y + t^8.55/y - t^4.66*y - t^6.88*y + t^7.34*y - t^7.99*y + t^8.45*y + t^8.55*y t^2.22/(g2^4*g3^4) + t^3.33/(g2^6*g3^6) + g1*g2^4*t^3.78 + g1*g3^4*t^3.78 + 2*g2^4*g3^4*t^3.78 + (g2^8*g3^4*t^3.78)/g1 + (g2^4*g3^8*t^3.78)/g1 + (g1*g2^4*g3^4*t^3.78)/g4 + (g2^8*g3^4*t^3.78)/g4 + (g2^4*g3^8*t^3.78)/g4 + (g2^8*g3^8*t^3.78)/(g1*g4) + g1*g4*t^3.78 + g2^4*g4*t^3.78 + g3^4*g4*t^3.78 + (g2^4*g3^4*g4*t^3.78)/g1 + t^4.44/(g2^8*g3^8) + (g1^2*t^5.45)/(g2^3*g3^3) + (g1*g2*t^5.45)/g3^3 + (g2^5*t^5.45)/g3^3 + (g1*g3*t^5.45)/g2^3 + 3*g2*g3*t^5.45 + (g2^5*g3*t^5.45)/g1 + (g3^5*t^5.45)/g2^3 + (g2*g3^5*t^5.45)/g1 + (g2^5*g3^5*t^5.45)/g1^2 + (g2^5*g3^5*t^5.45)/g4^2 + (g1*g2*g3*t^5.45)/g4 + (g2^5*g3*t^5.45)/g4 + (g2*g3^5*t^5.45)/g4 + (g2^5*g3^5*t^5.45)/(g1*g4) + (g1*g4*t^5.45)/(g2^3*g3^3) + (g2*g4*t^5.45)/g3^3 + (g3*g4*t^5.45)/g2^3 + (g2*g3*g4*t^5.45)/g1 + (g4^2*t^5.45)/(g2^3*g3^3) + t^5.55/(g2^10*g3^10) - 4*t^6. - (g1*t^6.)/g2^4 - (g2^4*t^6.)/g1 - (g1*t^6.)/g3^4 - (g1^2*t^6.)/(g2^4*g3^4) - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1 - (g3^4*t^6.)/g2^4 - (g2^4*g3^4*t^6.)/g1^2 - (g2^4*g3^4*t^6.)/g4^2 - (g1*t^6.)/g4 - (g2^4*t^6.)/g4 - (g3^4*t^6.)/g4 - (g2^4*g3^4*t^6.)/(g1*g4) - (g4*t^6.)/g1 - (g4*t^6.)/g2^4 - (g4*t^6.)/g3^4 - (g1*g4*t^6.)/(g2^4*g3^4) - (g4^2*t^6.)/(g2^4*g3^4) + (2*t^6.65)/(g2^12*g3^12) + (g1*t^7.11)/(g2^2*g3^6) + (g1*t^7.11)/(g2^6*g3^2) + (2*t^7.11)/(g2^2*g3^2) + (g2^2*t^7.11)/(g1*g3^2) + (g3^2*t^7.11)/(g1*g2^2) + (g1*t^7.11)/(g2^2*g3^2*g4) + (g2^2*t^7.11)/(g3^2*g4) + (g3^2*t^7.11)/(g2^2*g4) + (g2^2*g3^2*t^7.11)/(g1*g4) + (g1*g4*t^7.11)/(g2^6*g3^6) + (g4*t^7.11)/(g2^2*g3^6) + (g4*t^7.11)/(g2^6*g3^2) + (g4*t^7.11)/(g1*g2^2*g3^2) + g1^2*g2^8*t^7.56 + 2*g1^2*g2^4*g3^4*t^7.56 + 3*g1*g2^8*g3^4*t^7.56 + 2*g2^12*g3^4*t^7.56 + g1^2*g3^8*t^7.56 + 3*g1*g2^4*g3^8*t^7.56 + 6*g2^8*g3^8*t^7.56 + (3*g2^12*g3^8*t^7.56)/g1 + (g2^16*g3^8*t^7.56)/g1^2 + 2*g2^4*g3^12*t^7.56 + (3*g2^8*g3^12*t^7.56)/g1 + (2*g2^12*g3^12*t^7.56)/g1^2 + (g2^8*g3^16*t^7.56)/g1^2 + (g1^2*g2^8*g3^8*t^7.56)/g4^2 + (g1*g2^12*g3^8*t^7.56)/g4^2 + (g2^16*g3^8*t^7.56)/g4^2 + (g1*g2^8*g3^12*t^7.56)/g4^2 + (2*g2^12*g3^12*t^7.56)/g4^2 + (g2^16*g3^12*t^7.56)/(g1*g4^2) + (g2^8*g3^16*t^7.56)/g4^2 + (g2^12*g3^16*t^7.56)/(g1*g4^2) + (g2^16*g3^16*t^7.56)/(g1^2*g4^2) + (g1^2*g2^8*g3^4*t^7.56)/g4 + (g1*g2^12*g3^4*t^7.56)/g4 + (g1^2*g2^4*g3^8*t^7.56)/g4 + (3*g1*g2^8*g3^8*t^7.56)/g4 + (3*g2^12*g3^8*t^7.56)/g4 + (g2^16*g3^8*t^7.56)/(g1*g4) + (g1*g2^4*g3^12*t^7.56)/g4 + (3*g2^8*g3^12*t^7.56)/g4 + (3*g2^12*g3^12*t^7.56)/(g1*g4) + (g2^16*g3^12*t^7.56)/(g1^2*g4) + (g2^8*g3^16*t^7.56)/(g1*g4) + (g2^12*g3^16*t^7.56)/(g1^2*g4) + g1^2*g2^4*g4*t^7.56 + g1*g2^8*g4*t^7.56 + g1^2*g3^4*g4*t^7.56 + 3*g1*g2^4*g3^4*g4*t^7.56 + 3*g2^8*g3^4*g4*t^7.56 + (g2^12*g3^4*g4*t^7.56)/g1 + g1*g3^8*g4*t^7.56 + 3*g2^4*g3^8*g4*t^7.56 + (3*g2^8*g3^8*g4*t^7.56)/g1 + (g2^12*g3^8*g4*t^7.56)/g1^2 + (g2^4*g3^12*g4*t^7.56)/g1 + (g2^8*g3^12*g4*t^7.56)/g1^2 + g1^2*g4^2*t^7.56 + g1*g2^4*g4^2*t^7.56 + g2^8*g4^2*t^7.56 + g1*g3^4*g4^2*t^7.56 + 2*g2^4*g3^4*g4^2*t^7.56 + (g2^8*g3^4*g4^2*t^7.56)/g1 + g3^8*g4^2*t^7.56 + (g2^4*g3^8*g4^2*t^7.56)/g1 + (g2^8*g3^8*g4^2*t^7.56)/g1^2 - (g1*t^7.66)/(g2^3*g3^7) - (g1*t^7.66)/(g2^7*g3^3) - (2*t^7.66)/(g2^3*g3^3) - (g2*t^7.66)/(g1*g3^3) - (g3*t^7.66)/(g1*g2^3) - (g1*t^7.66)/(g2^3*g3^3*g4) - (g2*t^7.66)/(g3^3*g4) - (g3*t^7.66)/(g2^3*g4) - (g2*g3*t^7.66)/(g1*g4) - (g1*g4*t^7.66)/(g2^7*g3^7) - (g4*t^7.66)/(g2^3*g3^7) - (g4*t^7.66)/(g2^7*g3^3) - (g4*t^7.66)/(g1*g2^3*g3^3) + t^7.76/(g2^14*g3^14) - g1^2*g2^3*g3^3*t^8.12 - g1*g2^7*g3^3*t^8.12 - g2^11*g3^3*t^8.12 - g1*g2^3*g3^7*t^8.12 - 3*g2^7*g3^7*t^8.12 - (g2^11*g3^7*t^8.12)/g1 - g2^3*g3^11*t^8.12 - (g2^7*g3^11*t^8.12)/g1 - (g2^11*g3^11*t^8.12)/g1^2 - (g2^11*g3^11*t^8.12)/g4^2 - (g1*g2^7*g3^7*t^8.12)/g4 - (g2^11*g3^7*t^8.12)/g4 - (g2^7*g3^11*t^8.12)/g4 - (g2^11*g3^11*t^8.12)/(g1*g4) - g1*g2^3*g3^3*g4*t^8.12 - g2^7*g3^3*g4*t^8.12 - g2^3*g3^7*g4*t^8.12 - (g2^7*g3^7*g4*t^8.12)/g1 - g2^3*g3^3*g4^2*t^8.12 - t^8.22/(g2^4*g3^4) + (g1^2*t^8.77)/(g2^9*g3^9) + (g1*t^8.77)/(g2^5*g3^9) + t^8.77/(g2*g3^9) + (g1*t^8.77)/(g2^9*g3^5) + (3*t^8.77)/(g2^5*g3^5) + t^8.77/(g1*g2*g3^5) + t^8.77/(g2^9*g3) + t^8.77/(g1*g2^5*g3) + t^8.77/(g1^2*g2*g3) + t^8.77/(g2*g3*g4^2) + (g1*t^8.77)/(g2^5*g3^5*g4) + t^8.77/(g2*g3^5*g4) + t^8.77/(g2^5*g3*g4) + t^8.77/(g1*g2*g3*g4) + (g1*g4*t^8.77)/(g2^9*g3^9) + (g4*t^8.77)/(g2^5*g3^9) + (g4*t^8.77)/(g2^9*g3^5) + (g4*t^8.77)/(g1*g2^5*g3^5) + (g4^2*t^8.77)/(g2^9*g3^9) + (2*t^8.87)/(g2^16*g3^16) - t^4.66/(g2^3*g3^3*y) - t^6.88/(g2^7*g3^7*y) + (g2^3*g3^3*t^7.34)/y - t^7.99/(g2^9*g3^9*y) + (g2*g3*t^8.45)/y + t^8.55/(g2^10*g3^10*y) - (t^4.66*y)/(g2^3*g3^3) - (t^6.88*y)/(g2^7*g3^7) + g2^3*g3^3*t^7.34*y - (t^7.99*y)/(g2^9*g3^9) + g2*g3*t^8.45*y + (t^8.55*y)/(g2^10*g3^10)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55815 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ + $ M_2\phi_1^2$ 0.8898 1.0944 0.8131 [X:[], M:[0.7703, 0.8446], q:[0.6149, 0.6149, 0.6149], qb:[0.6149, 0.6149, 0.6149], phi:[0.5777]] t^2.31 + t^2.53 + 14*t^3.69 + t^4.62 + t^4.84 + t^5.07 + 21*t^5.42 - 22*t^6. - t^4.73/y - t^4.73*y detail
55805 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.8977 1.1025 0.8142 [X:[], M:[0.7303, 0.7303], q:[0.6348, 0.6348, 0.6348], qb:[0.6348, 0.6348, 0.6348], phi:[0.5477]] 2*t^2.19 + t^3.29 + 13*t^3.81 + 3*t^4.38 + 21*t^5.45 + 2*t^5.48 - 10*t^6. - t^4.64/y - t^4.64*y detail
55812 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ + $ \phi_1q_2\tilde{q}_1$ 0.8577 1.0434 0.822 [X:[], M:[0.7168], q:[0.552, 0.7312, 0.6416], qb:[0.7312, 0.552, 0.6416], phi:[0.5376]] t^2.15 + t^3.23 + t^3.31 + 4*t^3.58 + 4*t^3.85 + 4*t^4.12 + t^4.3 + t^4.39 + 3*t^4.92 + 4*t^5.19 + t^5.38 + 4*t^5.46 - 5*t^6. - t^4.61/y - t^4.61*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55443 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8782 1.0685 0.8219 [X:[], M:[0.7317], q:[0.6342, 0.6342, 0.621], qb:[0.6342, 0.6342, 0.621], phi:[0.5553]] t^2.19 + t^3.33 + t^3.73 + 8*t^3.77 + 5*t^3.81 + t^4.39 + 3*t^5.39 + 8*t^5.43 + 10*t^5.47 + t^5.53 + t^5.92 - 15*t^6. - t^4.67/y - t^4.67*y detail