Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55655 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_3\tilde{q}_1$ | 0.898 | 1.1046 | 0.813 | [X:[], M:[0.7279, 0.715], q:[0.6361, 0.6361, 0.6387], qb:[0.6463, 0.6258, 0.6185], phi:[0.5496]] | [X:[], M:[[0, 0, -2, -2, 0], [0, -4, -2, 0, 0]], q:[[-1, 0, 2, 2, 0], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 4]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_3$ | . | -7 | t^2.15 + t^2.18 + t^3.3 + t^3.73 + 2*t^3.76 + t^3.77 + 4*t^3.79 + 3*t^3.82 + 2*t^3.85 + t^4.29 + t^4.33 + t^4.37 + t^5.36 + t^5.38 + t^5.4 + 2*t^5.41 + t^5.42 + 2*t^5.43 + 3*t^5.44 + 6*t^5.47 + 2*t^5.48 + 3*t^5.5 + t^5.53 + t^5.88 + 2*t^5.91 + t^5.92 + 2*t^5.93 + t^5.96 - 7*t^6. - 2*t^6.02 - 2*t^6.03 - t^6.04 - 2*t^6.05 - 2*t^6.06 - t^6.08 + t^6.44 + t^6.47 + t^6.51 + t^6.55 + t^6.6 + t^7.03 + 2*t^7.06 + t^7.07 + 2*t^7.08 + 2*t^7.09 + t^7.11 + 2*t^7.12 + 2*t^7.14 + t^7.47 + 3*t^7.5 + t^7.51 + 2*t^7.52 + 6*t^7.53 + 4*t^7.54 + 5*t^7.55 + 8*t^7.56 + 6*t^7.57 + 8*t^7.58 + 8*t^7.59 + 5*t^7.6 + 11*t^7.61 + 4*t^7.62 + 6*t^7.63 + 4*t^7.64 + t^7.65 + 3*t^7.66 + 3*t^7.67 - 2*t^7.68 + 3*t^7.69 - 2*t^7.7 - t^7.71 - t^7.73 + t^8.02 + 2*t^8.05 + t^8.08 + t^8.1 - 3*t^8.11 - 2*t^8.12 - 2*t^8.14 - 8*t^8.15 - 5*t^8.17 - 9*t^8.18 - 4*t^8.2 - 3*t^8.21 - t^8.22 - t^8.23 - t^8.24 + t^8.29 + t^8.58 + t^8.62 + 2*t^8.66 + t^8.68 + 2*t^8.7 + 2*t^8.71 + t^8.72 + 3*t^8.73 + 3*t^8.74 + 4*t^8.76 + 2*t^8.77 + 2*t^8.78 + 2*t^8.79 + t^8.8 + t^8.82 - t^4.65/y - t^6.79/y - t^6.83/y + t^7.33/y + t^7.35/y - t^7.95/y + t^8.44/y + t^8.47/y + t^8.48/y + t^8.5/y + t^8.88/y + (2*t^8.91)/y + (2*t^8.92)/y + (2*t^8.93)/y + t^8.94/y + (2*t^8.95)/y + (2*t^8.96)/y + (4*t^8.97)/y + t^8.98/y + (2*t^8.99)/y - t^4.65*y - t^6.79*y - t^6.83*y + t^7.33*y + t^7.35*y - t^7.95*y + t^8.44*y + t^8.47*y + t^8.48*y + t^8.5*y + t^8.88*y + 2*t^8.91*y + 2*t^8.92*y + 2*t^8.93*y + t^8.94*y + 2*t^8.95*y + 2*t^8.96*y + 4*t^8.97*y + t^8.98*y + 2*t^8.99*y | t^2.15/(g2^4*g3^2) + t^2.18/(g3^2*g4^2) + t^3.3/(g2^2*g3^2*g4^2*g5^2) + g4^2*g5^4*t^3.73 + g1*g5^4*t^3.76 + (g3^2*g4^2*g5^4*t^3.76)/g1 + g2^4*g5^4*t^3.77 + g1*g4^2*t^3.79 + g2^4*g4^2*t^3.79 + (g3^2*g4^4*t^3.79)/g1 + g3^2*g5^4*t^3.79 + g1*g2^4*t^3.82 + g3^2*g4^2*t^3.82 + (g2^4*g3^2*g4^2*t^3.82)/g1 + g1*g3^2*t^3.85 + (g3^4*g4^2*t^3.85)/g1 + t^4.29/(g2^8*g3^4) + t^4.33/(g2^4*g3^4*g4^2) + t^4.37/(g3^4*g4^4) + (g5^7*t^5.36)/(g2*g3*g4) + (g4*g5^3*t^5.38)/(g2*g3) + (g4^3*t^5.4)/(g2*g3*g5) + (g1*g5^3*t^5.41)/(g2*g3*g4) + (g3*g4*g5^3*t^5.41)/(g1*g2) + (g2^3*g5^3*t^5.42)/(g3*g4) + (g1*g4*t^5.43)/(g2*g3*g5) + (g3*g4^3*t^5.43)/(g1*g2*g5) + t^5.44/(g2^6*g3^4*g4^2*g5^2) + (g2^3*g4*t^5.44)/(g3*g5) + (g3*g5^3*t^5.44)/(g2*g4) + (g1^2*t^5.47)/(g2*g3*g4*g5) + (g1*g2^3*t^5.47)/(g3*g4*g5) + (2*g3*g4*t^5.47)/(g2*g5) + (g2^3*g3*g4*t^5.47)/(g1*g5) + (g3^3*g4^3*t^5.47)/(g1^2*g2*g5) + t^5.48/(g2^2*g3^4*g4^4*g5^2) + (g2^7*t^5.48)/(g3*g4*g5) + (g1*g3*t^5.5)/(g2*g4*g5) + (g2^3*g3*t^5.5)/(g4*g5) + (g3^3*g4*t^5.5)/(g1*g2*g5) + (g3^3*t^5.53)/(g2*g4*g5) + (g4^2*g5^4*t^5.88)/(g2^4*g3^2) + (g1*g5^4*t^5.91)/(g2^4*g3^2) + (g4^2*g5^4*t^5.91)/(g1*g2^4) + (g5^4*t^5.92)/g3^2 + (g1*g4^2*t^5.93)/(g2^4*g3^2) + (g4^4*t^5.93)/(g1*g2^4) + (g2^4*g5^4*t^5.96)/(g3^2*g4^2) - 5*t^6. - (g1^2*t^6.)/(g3^2*g4^2) - (g3^2*g4^2*t^6.)/g1^2 - (g3^2*t^6.02)/g2^4 - (g4^2*t^6.02)/g5^4 - (g3^2*t^6.03)/g1 - (g1*t^6.03)/g4^2 - (g2^4*t^6.04)/g4^2 - (g1*t^6.05)/g5^4 - (g3^2*g4^2*t^6.05)/(g1*g5^4) - (g3^2*t^6.06)/g4^2 - (g2^4*t^6.06)/g5^4 - (g3^2*t^6.08)/g5^4 + t^6.44/(g2^12*g3^6) + t^6.47/(g2^8*g3^6*g4^2) + t^6.51/(g2^4*g3^6*g4^4) + t^6.55/(g3^6*g4^6) + t^6.6/(g2^4*g3^4*g4^4*g5^4) + (g5^2*t^7.03)/(g2^2*g3^2) + (g5^2*t^7.06)/(g1*g2^2) + (g1*g5^2*t^7.06)/(g2^2*g3^2*g4^2) + (g2^2*g5^2*t^7.07)/(g3^2*g4^2) + (g1*t^7.08)/(g2^2*g3^2*g5^2) + (g4^2*t^7.08)/(g1*g2^2*g5^2) + (g2^2*t^7.09)/(g3^2*g5^2) + (g5^2*t^7.09)/(g2^2*g4^2) + t^7.11/(g2^2*g5^2) + (g2^2*t^7.12)/(g1*g5^2) + (g1*g2^2*t^7.12)/(g3^2*g4^2*g5^2) + (g3^2*t^7.14)/(g1*g2^2*g5^2) + (g1*t^7.14)/(g2^2*g4^2*g5^2) + g4^4*g5^8*t^7.47 + g1*g4^2*g5^8*t^7.5 + g2^4*g4^2*g5^8*t^7.5 + (g3^2*g4^4*g5^8*t^7.5)/g1 + (g5^7*t^7.51)/(g2^5*g3^3*g4) + g1*g4^4*g5^4*t^7.52 + (g3^2*g4^6*g5^4*t^7.52)/g1 + (g4*g5^3*t^7.53)/(g2^5*g3^3) + g2^4*g4^4*g5^4*t^7.53 + g1^2*g5^8*t^7.53 + 2*g3^2*g4^2*g5^8*t^7.53 + (g3^4*g4^4*g5^8*t^7.53)/g1^2 + (g5^7*t^7.54)/(g2*g3^3*g4^3) + g1*g2^4*g5^8*t^7.54 + g2^8*g5^8*t^7.54 + (g2^4*g3^2*g4^2*g5^8*t^7.54)/g1 + (g4^3*t^7.55)/(g2^5*g3^3*g5) + g1^2*g4^2*g5^4*t^7.55 + 2*g3^2*g4^4*g5^4*t^7.55 + (g3^4*g4^6*g5^4*t^7.55)/g1^2 + (g1*g5^3*t^7.56)/(g2^5*g3^3*g4) + (g4*g5^3*t^7.56)/(g1*g2^5*g3) + 2*g1*g2^4*g4^2*g5^4*t^7.56 + (2*g2^4*g3^2*g4^4*g5^4*t^7.56)/g1 + g1*g3^2*g5^8*t^7.56 + (g3^4*g4^2*g5^8*t^7.56)/g1 + g1^2*g4^4*t^7.57 + g3^2*g4^6*t^7.57 + (g3^4*g4^8*t^7.57)/g1^2 + (g5^3*t^7.57)/(g2*g3^3*g4) + g2^8*g4^2*g5^4*t^7.57 + g2^4*g3^2*g5^8*t^7.57 + g1*g2^4*g4^4*t^7.58 + (g2^4*g3^2*g4^6*t^7.58)/g1 + (g1*g4*t^7.58)/(g2^5*g3^3*g5) + (g4^3*t^7.58)/(g1*g2^5*g3*g5) + 2*g1*g3^2*g4^2*g5^4*t^7.58 + (2*g3^4*g4^4*g5^4*t^7.58)/g1 + g2^8*g4^4*t^7.59 + t^7.59/(g2^10*g3^6*g4^2*g5^2) + (g4*t^7.59)/(g2*g3^3*g5) + g1^2*g2^4*g5^4*t^7.59 + 2*g2^4*g3^2*g4^2*g5^4*t^7.59 + (g2^4*g3^4*g4^4*g5^4*t^7.59)/g1^2 + g3^4*g5^8*t^7.59 + g1*g3^2*g4^4*t^7.6 + (g3^4*g4^6*t^7.6)/g1 + (g2^3*g5^3*t^7.6)/(g3^3*g4^3) + g1*g2^8*g5^4*t^7.6 + (g2^8*g3^2*g4^2*g5^4*t^7.6)/g1 + g1^2*g2^4*g4^2*t^7.61 + 2*g2^4*g3^2*g4^4*t^7.61 + (g2^4*g3^4*g4^6*t^7.61)/g1^2 + (g1^2*t^7.61)/(g2^5*g3^3*g4*g5) + (g4*t^7.61)/(g2^5*g3*g5) + (g3*g4^3*t^7.61)/(g1^2*g2^5*g5) + g1^2*g3^2*g5^4*t^7.61 + 2*g3^4*g4^2*g5^4*t^7.61 + (g3^6*g4^4*g5^4*t^7.61)/g1^2 + g1*g2^8*g4^2*t^7.62 + (g2^8*g3^2*g4^4*t^7.62)/g1 + g1*g2^4*g3^2*g5^4*t^7.62 + (g2^4*g3^4*g4^2*g5^4*t^7.62)/g1 + g1^2*g3^2*g4^2*t^7.63 + 2*g3^4*g4^4*t^7.63 + (g3^6*g4^6*t^7.63)/g1^2 + t^7.63/(g2^6*g3^6*g4^4*g5^2) + (g2^3*t^7.63)/(g3^3*g4*g5) + g1*g2^4*g3^2*g4^2*t^7.64 + (g2^4*g3^4*g4^4*t^7.64)/g1 + g1*g3^4*g5^4*t^7.64 + (g3^6*g4^2*g5^4*t^7.64)/g1 + g1^2*g2^8*t^7.65 + g2^8*g3^2*g4^2*t^7.65 + (g2^8*g3^4*g4^4*t^7.65)/g1^2 - (2*t^7.65)/(g2*g3*g4*g5) + g1*g3^4*g4^2*t^7.66 + (g3^6*g4^4*t^7.66)/g1 + (g2^7*t^7.66)/(g3^3*g4^3*g5) + g1^2*g2^4*g3^2*t^7.67 + g2^4*g3^4*g4^2*t^7.67 + (g2^4*g3^6*g4^4*t^7.67)/g1^2 - (g4*t^7.67)/(g2*g3*g5^5) + t^7.67/(g2^2*g3^6*g4^6*g5^2) - (g1*t^7.68)/(g2*g3*g4^3*g5) - (g3*t^7.68)/(g1*g2*g4*g5) + g1^2*g3^4*t^7.69 + g3^6*g4^2*t^7.69 + (g3^8*g4^4*t^7.69)/g1^2 - (g1*t^7.7)/(g2*g3*g4*g5^5) - (g3*g4*t^7.7)/(g1*g2*g5^5) - (g2^3*t^7.71)/(g3*g4*g5^5) - (g3*t^7.73)/(g2*g4*g5^5) + (g4^2*g5^4*t^8.02)/(g2^8*g3^4) + (g1*g5^4*t^8.05)/(g2^8*g3^4) + (g4^2*g5^4*t^8.05)/(g1*g2^8*g3^2) + (g5^4*t^8.06)/(g2^4*g3^4) - g2*g3*g4*g5^9*t^8.06 + (g1*g4^2*t^8.08)/(g2^8*g3^4) + (g4^4*t^8.08)/(g1*g2^8*g3^2) - g2*g3*g4^3*g5^5*t^8.08 + (g5^4*t^8.1)/(g3^4*g4^2) - g2*g3*g4^5*g5*t^8.11 - g1*g2*g3*g4*g5^5*t^8.11 - (g2*g3^3*g4^3*g5^5*t^8.11)/g1 - (g5^4*t^8.12)/(g2^4*g3^2*g4^2) - g2^5*g3*g4*g5^5*t^8.12 - g1*g2*g3*g4^3*g5*t^8.14 - g2^5*g3*g4^3*g5*t^8.14 - (g2*g3^3*g4^5*g5*t^8.14)/g1 + (g2^4*g5^4*t^8.14)/(g3^4*g4^4) - (5*t^8.15)/(g2^4*g3^2) - (g1^2*t^8.15)/(g2^4*g3^4*g4^2) - (g4^2*t^8.15)/(g1^2*g2^4) - g2*g3^3*g4*g5^5*t^8.15 - (g4^2*t^8.17)/(g2^4*g3^2*g5^4) - g1^2*g2*g3*g4*g5*t^8.17 - 2*g2*g3^3*g4^3*g5*t^8.17 - (g2*g3^5*g4^5*g5*t^8.17)/g1^2 - t^8.18/(g1*g2^4) - (4*t^8.18)/(g3^2*g4^2) - (g1*t^8.18)/(g2^4*g3^2*g4^2) - g1*g2^5*g3*g4*g5*t^8.18 - g2^9*g3*g4*g5*t^8.18 - (g2^5*g3^3*g4^3*g5*t^8.18)/g1 - (g1*t^8.2)/(g2^4*g3^2*g5^4) - (g4^2*t^8.2)/(g1*g2^4*g5^4) - g1*g2*g3^3*g4*g5*t^8.2 - (g2*g3^5*g4^3*g5*t^8.2)/g1 - t^8.21/(g2^4*g4^2) - t^8.21/(g3^2*g5^4) - g2^5*g3^3*g4*g5*t^8.21 - (g2^4*t^8.22)/(g3^2*g4^4) - g2*g3^5*g4*g5*t^8.23 - (g2^4*t^8.24)/(g3^2*g4^2*g5^4) + t^8.29/g5^8 + t^8.58/(g2^16*g3^8) + t^8.62/(g2^12*g3^8*g4^2) + t^8.66/(g2^8*g3^8*g4^4) + (g5^5*t^8.66)/(g2^3*g3^3*g4^3) + (g5*t^8.68)/(g2^3*g3^3*g4) + t^8.7/(g2^4*g3^8*g4^6) + (g4*t^8.7)/(g2^3*g3^3*g5^3) + (g1*g5*t^8.71)/(g2^3*g3^3*g4^3) + (g5*t^8.71)/(g1*g2^3*g3*g4) + (g2*g5*t^8.72)/(g3^3*g4^3) + t^8.73/(g3^8*g4^8) + (g1*t^8.73)/(g2^3*g3^3*g4*g5^3) + (g4*t^8.73)/(g1*g2^3*g3*g5^3) + t^8.74/(g2^8*g3^6*g4^4*g5^4) + (g2*t^8.74)/(g3^3*g4*g5^3) + (g5*t^8.74)/(g2^3*g3*g4^3) + (g1^2*t^8.76)/(g2^3*g3^3*g4^3*g5^3) + (2*t^8.76)/(g2^3*g3*g4*g5^3) + (g3*g4*t^8.76)/(g1^2*g2^3*g5^3) + (g1*g2*t^8.77)/(g3^3*g4^3*g5^3) + (g2*t^8.77)/(g1*g3*g4*g5^3) + t^8.78/(g2^4*g3^6*g4^6*g5^4) + (g2^5*t^8.78)/(g3^3*g4^3*g5^3) + (g1*t^8.79)/(g2^3*g3*g4^3*g5^3) + (g3*t^8.79)/(g1*g2^3*g4*g5^3) + (g2*t^8.8)/(g3*g4^3*g5^3) + (g3*t^8.82)/(g2^3*g4^3*g5^3) - t^4.65/(g2*g3*g4*g5*y) - t^6.79/(g2^5*g3^3*g4*g5*y) - t^6.83/(g2*g3^3*g4^3*g5*y) + t^7.33/(g2^4*g3^4*g4^2*y) + (g2*g3*g4*g5*t^7.35)/y - t^7.95/(g2^3*g3^3*g4^3*g5^3*y) + t^8.44/(g2^6*g3^4*g4^2*g5^2*y) + (g3*g4*t^8.47)/(g2*g5*y) + t^8.48/(g2^2*g3^4*g4^4*g5^2*y) + (g2^3*g3*t^8.5)/(g4*g5*y) + (g4^2*g5^4*t^8.88)/(g2^4*g3^2*y) + (g1*g5^4*t^8.91)/(g2^4*g3^2*y) + (g4^2*g5^4*t^8.91)/(g1*g2^4*y) + (2*g5^4*t^8.92)/(g3^2*y) + (g1*g4^2*t^8.93)/(g2^4*g3^2*y) + (g4^4*t^8.93)/(g1*g2^4*y) + (g4^2*t^8.94)/(g3^2*y) - t^8.94/(g2^9*g3^5*g4*g5*y) + (g5^4*t^8.94)/(g2^4*y) + (g5^4*t^8.95)/(g1*y) + (g1*g5^4*t^8.95)/(g3^2*g4^2*y) + (g4^2*t^8.96)/(g2^4*y) + (g2^4*g5^4*t^8.96)/(g3^2*g4^2*y) + (2*g1*t^8.97)/(g3^2*y) + (2*g4^2*t^8.97)/(g1*y) + (g2^4*t^8.98)/(g3^2*y) - t^8.98/(g2^5*g3^5*g4^3*g5*y) + (g5^4*t^8.98)/(g4^2*y) + (g1*t^8.99)/(g2^4*y) + (g3^2*g4^2*t^8.99)/(g1*g2^4*y) - (t^4.65*y)/(g2*g3*g4*g5) - (t^6.79*y)/(g2^5*g3^3*g4*g5) - (t^6.83*y)/(g2*g3^3*g4^3*g5) + (t^7.33*y)/(g2^4*g3^4*g4^2) + g2*g3*g4*g5*t^7.35*y - (t^7.95*y)/(g2^3*g3^3*g4^3*g5^3) + (t^8.44*y)/(g2^6*g3^4*g4^2*g5^2) + (g3*g4*t^8.47*y)/(g2*g5) + (t^8.48*y)/(g2^2*g3^4*g4^4*g5^2) + (g2^3*g3*t^8.5*y)/(g4*g5) + (g4^2*g5^4*t^8.88*y)/(g2^4*g3^2) + (g1*g5^4*t^8.91*y)/(g2^4*g3^2) + (g4^2*g5^4*t^8.91*y)/(g1*g2^4) + (2*g5^4*t^8.92*y)/g3^2 + (g1*g4^2*t^8.93*y)/(g2^4*g3^2) + (g4^4*t^8.93*y)/(g1*g2^4) + (g4^2*t^8.94*y)/g3^2 - (t^8.94*y)/(g2^9*g3^5*g4*g5) + (g5^4*t^8.94*y)/g2^4 + (g5^4*t^8.95*y)/g1 + (g1*g5^4*t^8.95*y)/(g3^2*g4^2) + (g4^2*t^8.96*y)/g2^4 + (g2^4*g5^4*t^8.96*y)/(g3^2*g4^2) + (2*g1*t^8.97*y)/g3^2 + (2*g4^2*t^8.97*y)/g1 + (g2^4*t^8.98*y)/g3^2 - (t^8.98*y)/(g2^5*g3^5*g4^3*g5) + (g5^4*t^8.98*y)/g4^2 + (g1*t^8.99*y)/g2^4 + (g3^2*g4^2*t^8.99*y)/(g1*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55750 | $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_3\tilde{q}_1$ + $ M_2q_2\tilde{q}_3$ | 0.8978 | 1.1033 | 0.8137 | [X:[], M:[0.727, 0.727], q:[0.6302, 0.6428, 0.6302], qb:[0.6428, 0.6302, 0.6302], phi:[0.5484]] | 2*t^2.18 + t^3.29 + 6*t^3.78 + 6*t^3.82 + t^3.86 + 3*t^4.36 + 10*t^5.43 + 8*t^5.46 + 2*t^5.47 + 3*t^5.5 + 4*t^5.96 - 8*t^6. - t^4.65/y - t^4.65*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55443 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8782 | 1.0685 | 0.8219 | [X:[], M:[0.7317], q:[0.6342, 0.6342, 0.621], qb:[0.6342, 0.6342, 0.621], phi:[0.5553]] | t^2.19 + t^3.33 + t^3.73 + 8*t^3.77 + 5*t^3.81 + t^4.39 + 3*t^5.39 + 8*t^5.43 + 10*t^5.47 + t^5.53 + t^5.92 - 15*t^6. - t^4.67/y - t^4.67*y | detail |