Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55450 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}q_{3}$ 0.8714 1.0594 0.8226 [M:[0.7357], q:[0.7257, 0.6322, 0.6322], qb:[0.6051, 0.6051, 0.6051], phi:[0.5487]] [M:[[-7, -7, 0, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{2}$, ${ }q_{1}q_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$ ${}$ -13 t^2.207 + t^3.292 + 3*t^3.631 + 6*t^3.712 + 3*t^3.992 + 2*t^4.074 + t^4.414 + 6*t^5.277 + 6*t^5.358 + 3*t^5.439 + t^5.499 + 3*t^5.838 - 13*t^6. - 6*t^6.081 + 3*t^6.199 - 3*t^6.362 + t^6.584 + t^6.621 + 3*t^6.923 + 6*t^7.004 + 6*t^7.262 + 16*t^7.343 + 18*t^7.424 + 6*t^7.484 + 8*t^7.623 - 9*t^7.646 + 18*t^7.704 + t^7.706 - 6*t^7.727 + 9*t^7.785 + 3*t^8.045 - 10*t^8.207 - 3*t^8.346 + 6*t^8.369 + 3*t^8.406 - 2*t^8.428 + 3*t^8.569 + 6*t^8.65 - t^8.708 + 3*t^8.731 + t^8.791 + t^8.828 + 15*t^8.908 + 36*t^8.989 - t^4.646/y - t^6.853/y + t^7.354/y - t^7.938/y + t^8.439/y + t^8.499/y + (3*t^8.838)/y + (6*t^8.919)/y - t^4.646*y - t^6.853*y + t^7.354*y - t^7.938*y + t^8.439*y + t^8.499*y + 3*t^8.838*y + 6*t^8.919*y t^2.207/(g1^7*g2^7) + t^3.292/(g1^4*g2^4*g3^4*g4^4*g5^4) + g3^7*g4^7*t^3.631 + g3^7*g5^7*t^3.631 + g4^7*g5^7*t^3.631 + g1^7*g3^7*t^3.712 + g2^7*g3^7*t^3.712 + g1^7*g4^7*t^3.712 + g2^7*g4^7*t^3.712 + g1^7*g5^7*t^3.712 + g2^7*g5^7*t^3.712 + g1*g2*g3^8*g4*g5*t^3.992 + g1*g2*g3*g4^8*g5*t^3.992 + g1*g2*g3*g4*g5^8*t^3.992 + g1^8*g2*g3*g4*g5*t^4.074 + g1*g2^8*g3*g4*g5*t^4.074 + t^4.414/(g1^14*g2^14) + (g3^12*t^5.277)/(g1^2*g2^2*g4^2*g5^2) + (g3^5*g4^5*t^5.277)/(g1^2*g2^2*g5^2) + (g4^12*t^5.277)/(g1^2*g2^2*g3^2*g5^2) + (g3^5*g5^5*t^5.277)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.277)/(g1^2*g2^2*g3^2) + (g5^12*t^5.277)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g3^5*t^5.358)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.358)/(g1^2*g4^2*g5^2) + (g1^5*g4^5*t^5.358)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.358)/(g1^2*g3^2*g5^2) + (g1^5*g5^5*t^5.358)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.358)/(g1^2*g3^2*g4^2) + (g1^12*t^5.439)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.439)/(g3^2*g4^2*g5^2) + (g2^12*t^5.439)/(g1^2*g3^2*g4^2*g5^2) + t^5.499/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g3^7*g4^7*t^5.838)/(g1^7*g2^7) + (g3^7*g5^7*t^5.838)/(g1^7*g2^7) + (g4^7*g5^7*t^5.838)/(g1^7*g2^7) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.081)/g3^7 - (g2^7*t^6.081)/g3^7 - (g1^7*t^6.081)/g4^7 - (g2^7*t^6.081)/g4^7 - (g1^7*t^6.081)/g5^7 - (g2^7*t^6.081)/g5^7 + (g3^8*g4*g5*t^6.199)/(g1^6*g2^6) + (g3*g4^8*g5*t^6.199)/(g1^6*g2^6) + (g3*g4*g5^8*t^6.199)/(g1^6*g2^6) - (g1*g2*g3*g4*t^6.362)/g5^6 - (g1*g2*g3*g5*t^6.362)/g4^6 - (g1*g2*g4*g5*t^6.362)/g3^6 + t^6.584/(g1^8*g2^8*g3^8*g4^8*g5^8) + t^6.621/(g1^21*g2^21) + (g3^3*g4^3*t^6.923)/(g1^4*g2^4*g5^4) + (g3^3*g5^3*t^6.923)/(g1^4*g2^4*g4^4) + (g4^3*g5^3*t^6.923)/(g1^4*g2^4*g3^4) + (g1^3*g3^3*t^7.004)/(g2^4*g4^4*g5^4) + (g2^3*g3^3*t^7.004)/(g1^4*g4^4*g5^4) + (g1^3*g4^3*t^7.004)/(g2^4*g3^4*g5^4) + (g2^3*g4^3*t^7.004)/(g1^4*g3^4*g5^4) + (g1^3*g5^3*t^7.004)/(g2^4*g3^4*g4^4) + (g2^3*g5^3*t^7.004)/(g1^4*g3^4*g4^4) + g3^14*g4^14*t^7.262 + g3^14*g4^7*g5^7*t^7.262 + g3^7*g4^14*g5^7*t^7.262 + g3^14*g5^14*t^7.262 + g3^7*g4^7*g5^14*t^7.262 + g4^14*g5^14*t^7.262 + g1^7*g3^14*g4^7*t^7.343 + g2^7*g3^14*g4^7*t^7.343 + g1^7*g3^7*g4^14*t^7.343 + g2^7*g3^7*g4^14*t^7.343 + g1^7*g3^14*g5^7*t^7.343 + g2^7*g3^14*g5^7*t^7.343 + 2*g1^7*g3^7*g4^7*g5^7*t^7.343 + 2*g2^7*g3^7*g4^7*g5^7*t^7.343 + g1^7*g4^14*g5^7*t^7.343 + g2^7*g4^14*g5^7*t^7.343 + g1^7*g3^7*g5^14*t^7.343 + g2^7*g3^7*g5^14*t^7.343 + g1^7*g4^7*g5^14*t^7.343 + g2^7*g4^7*g5^14*t^7.343 + g1^14*g3^14*t^7.424 + g1^7*g2^7*g3^14*t^7.424 + g2^14*g3^14*t^7.424 + g1^14*g3^7*g4^7*t^7.424 + g1^7*g2^7*g3^7*g4^7*t^7.424 + g2^14*g3^7*g4^7*t^7.424 + g1^14*g4^14*t^7.424 + g1^7*g2^7*g4^14*t^7.424 + g2^14*g4^14*t^7.424 + g1^14*g3^7*g5^7*t^7.424 + g1^7*g2^7*g3^7*g5^7*t^7.424 + g2^14*g3^7*g5^7*t^7.424 + g1^14*g4^7*g5^7*t^7.424 + g1^7*g2^7*g4^7*g5^7*t^7.424 + g2^14*g4^7*g5^7*t^7.424 + g1^14*g5^14*t^7.424 + g1^7*g2^7*g5^14*t^7.424 + g2^14*g5^14*t^7.424 + (g3^12*t^7.484)/(g1^9*g2^9*g4^2*g5^2) + (g3^5*g4^5*t^7.484)/(g1^9*g2^9*g5^2) + (g4^12*t^7.484)/(g1^9*g2^9*g3^2*g5^2) + (g3^5*g5^5*t^7.484)/(g1^9*g2^9*g4^2) + (g4^5*g5^5*t^7.484)/(g1^9*g2^9*g3^2) + (g5^12*t^7.484)/(g1^9*g2^9*g3^2*g4^2) + g1*g2*g3^15*g4^8*g5*t^7.623 + g1*g2*g3^8*g4^15*g5*t^7.623 + g1*g2*g3^15*g4*g5^8*t^7.623 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.623 + g1*g2*g3*g4^15*g5^8*t^7.623 + g1*g2*g3^8*g4*g5^15*t^7.623 + g1*g2*g3*g4^8*g5^15*t^7.623 - (g3^5*t^7.646)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.646)/(g1^2*g2^2*g3^2*g5^9) - (g3^5*t^7.646)/(g1^2*g2^2*g4^9*g5^2) - (3*t^7.646)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g4^5*t^7.646)/(g1^2*g2^2*g3^9*g5^2) - (g5^5*t^7.646)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.646)/(g1^2*g2^2*g3^9*g4^2) + g1^8*g2*g3^15*g4*g5*t^7.704 + g1*g2^8*g3^15*g4*g5*t^7.704 + 2*g1^8*g2*g3^8*g4^8*g5*t^7.704 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.704 + g1^8*g2*g3*g4^15*g5*t^7.704 + g1*g2^8*g3*g4^15*g5*t^7.704 + 2*g1^8*g2*g3^8*g4*g5^8*t^7.704 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.704 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.704 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.704 + g1^8*g2*g3*g4*g5^15*t^7.704 + g1*g2^8*g3*g4*g5^15*t^7.704 + t^7.706/(g1^18*g2^18*g3^4*g4^4*g5^4) - (g1^5*t^7.727)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.727)/(g1^2*g3^2*g4^2*g5^9) - (g1^5*t^7.727)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.727)/(g1^2*g3^2*g4^9*g5^2) - (g1^5*t^7.727)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.727)/(g1^2*g3^9*g4^2*g5^2) + g1^15*g2*g3^8*g4*g5*t^7.785 + g1^8*g2^8*g3^8*g4*g5*t^7.785 + g1*g2^15*g3^8*g4*g5*t^7.785 + g1^15*g2*g3*g4^8*g5*t^7.785 + g1^8*g2^8*g3*g4^8*g5*t^7.785 + g1*g2^15*g3*g4^8*g5*t^7.785 + g1^15*g2*g3*g4*g5^8*t^7.785 + g1^8*g2^8*g3*g4*g5^8*t^7.785 + g1*g2^15*g3*g4*g5^8*t^7.785 + (g3^7*g4^7*t^8.045)/(g1^14*g2^14) + (g3^7*g5^7*t^8.045)/(g1^14*g2^14) + (g4^7*g5^7*t^8.045)/(g1^14*g2^14) - (4*t^8.207)/(g1^7*g2^7) - (g3^7*t^8.207)/(g1^7*g2^7*g4^7) - (g4^7*t^8.207)/(g1^7*g2^7*g3^7) - (g3^7*t^8.207)/(g1^7*g2^7*g5^7) - (g4^7*t^8.207)/(g1^7*g2^7*g5^7) - (g5^7*t^8.207)/(g1^7*g2^7*g3^7) - (g5^7*t^8.207)/(g1^7*g2^7*g4^7) - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.346 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.346 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.346 + t^8.369/g3^14 + t^8.369/g4^14 + t^8.369/(g3^7*g4^7) + t^8.369/g5^14 + t^8.369/(g3^7*g5^7) + t^8.369/(g4^7*g5^7) + (g3^8*g4*g5*t^8.406)/(g1^13*g2^13) + (g3*g4^8*g5*t^8.406)/(g1^13*g2^13) + (g3*g4*g5^8*t^8.406)/(g1^13*g2^13) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.428 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.428 + (g3^8*t^8.569)/(g1^6*g2^6*g4^6*g5^6) + (g4^8*t^8.569)/(g1^6*g2^6*g3^6*g5^6) + (g5^8*t^8.569)/(g1^6*g2^6*g3^6*g4^6) + (g1*g3*t^8.65)/(g2^6*g4^6*g5^6) + (g2*g3*t^8.65)/(g1^6*g4^6*g5^6) + (g1*g4*t^8.65)/(g2^6*g3^6*g5^6) + (g2*g4*t^8.65)/(g1^6*g3^6*g5^6) + (g1*g5*t^8.65)/(g2^6*g3^6*g4^6) + (g2*g5*t^8.65)/(g1^6*g3^6*g4^6) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.708 + (g1^8*t^8.731)/(g2^6*g3^6*g4^6*g5^6) + (g1*g2*t^8.731)/(g3^6*g4^6*g5^6) + (g2^8*t^8.731)/(g1^6*g3^6*g4^6*g5^6) + t^8.791/(g1^15*g2^15*g3^8*g4^8*g5^8) + t^8.828/(g1^28*g2^28) + (g3^19*g4^5*t^8.908)/(g1^2*g2^2*g5^2) + (g3^12*g4^12*t^8.908)/(g1^2*g2^2*g5^2) + (g3^5*g4^19*t^8.908)/(g1^2*g2^2*g5^2) + (g3^19*g5^5*t^8.908)/(g1^2*g2^2*g4^2) + (2*g3^12*g4^5*g5^5*t^8.908)/(g1^2*g2^2) + (2*g3^5*g4^12*g5^5*t^8.908)/(g1^2*g2^2) + (g4^19*g5^5*t^8.908)/(g1^2*g2^2*g3^2) + (g3^12*g5^12*t^8.908)/(g1^2*g2^2*g4^2) + (2*g3^5*g4^5*g5^12*t^8.908)/(g1^2*g2^2) + (g4^12*g5^12*t^8.908)/(g1^2*g2^2*g3^2) + (g3^5*g5^19*t^8.908)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.908)/(g1^2*g2^2*g3^2) + (g1^5*g3^19*t^8.989)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.989)/(g1^2*g4^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.989)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.989)/(g1^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.989)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.989)/(g1^2*g5^2) + (g1^5*g4^19*t^8.989)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.989)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^12*g5^5*t^8.989)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.989)/(g1^2*g4^2) + (3*g1^5*g3^5*g4^5*g5^5*t^8.989)/g2^2 + (3*g2^5*g3^5*g4^5*g5^5*t^8.989)/g1^2 + (2*g1^5*g4^12*g5^5*t^8.989)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.989)/(g1^2*g3^2) + (2*g1^5*g3^5*g5^12*t^8.989)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.989)/(g1^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.989)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.989)/(g1^2*g3^2) + (g1^5*g5^19*t^8.989)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.989)/(g1^2*g3^2*g4^2) - t^4.646/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.853/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.354)/y - t^7.938/(g1^6*g2^6*g3^6*g4^6*g5^6*y) + (g1^5*g2^5*t^8.439)/(g3^2*g4^2*g5^2*y) + t^8.499/(g1^11*g2^11*g3^4*g4^4*g5^4*y) + (g3^7*g4^7*t^8.838)/(g1^7*g2^7*y) + (g3^7*g5^7*t^8.838)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.838)/(g1^7*g2^7*y) + (g3^7*t^8.919)/(g1^7*y) + (g3^7*t^8.919)/(g2^7*y) + (g4^7*t^8.919)/(g1^7*y) + (g4^7*t^8.919)/(g2^7*y) + (g5^7*t^8.919)/(g1^7*y) + (g5^7*t^8.919)/(g2^7*y) - (t^4.646*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.853*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.354*y - (t^7.938*y)/(g1^6*g2^6*g3^6*g4^6*g5^6) + (g1^5*g2^5*t^8.439*y)/(g3^2*g4^2*g5^2) + (t^8.499*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g3^7*g4^7*t^8.838*y)/(g1^7*g2^7) + (g3^7*g5^7*t^8.838*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.838*y)/(g1^7*g2^7) + (g3^7*t^8.919*y)/g1^7 + (g3^7*t^8.919*y)/g2^7 + (g4^7*t^8.919*y)/g1^7 + (g4^7*t^8.919*y)/g2^7 + (g5^7*t^8.919*y)/g1^7 + (g5^7*t^8.919*y)/g2^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55677 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.8923 1.1009 0.8105 [M:[0.7357, 0.6684], q:[0.7258, 0.6322, 0.6322], qb:[0.6058, 0.6051, 0.6051], phi:[0.5485]] t^2.005 + t^2.207 + t^3.291 + t^3.631 + 2*t^3.633 + 4*t^3.712 + 2*t^3.714 + 2*t^3.993 + t^4.01 + 2*t^4.074 + t^4.212 + t^4.414 + 3*t^5.276 + 2*t^5.278 + t^5.28 + t^5.296 + 4*t^5.357 + 2*t^5.359 + 3*t^5.438 + t^5.498 + t^5.636 + 2*t^5.638 + 4*t^5.717 + 2*t^5.719 + t^5.838 + 2*t^5.84 - 9*t^6. - t^4.645/y - t^4.645*y detail
55689 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 0.8908 1.0945 0.8139 [M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] 2*t^2.177 + t^3.253 + t^3.61 + 4*t^3.679 + t^3.749 + 2*t^3.753 + 2*t^3.992 + 2*t^4.061 + t^4.135 + 3*t^4.354 + 3*t^5.236 + 4*t^5.306 + 3*t^5.375 + 2*t^5.38 + 2*t^5.43 + 2*t^5.449 + t^5.524 + 2*t^5.787 + 6*t^5.856 - 9*t^6. - t^4.627/y - t^4.627*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55429 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ 0.8526 1.0268 0.8304 [q:[0.7213, 0.6098, 0.6098], qb:[0.6098, 0.6098, 0.6098], phi:[0.5574]] t^3.344 + 10*t^3.659 + 5*t^3.993 + 15*t^5.331 - 25*t^6. - t^4.672/y - t^4.672*y detail