Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55450 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ 0.8714 1.0594 0.8226 [X:[], M:[0.7357], q:[0.7257, 0.6322, 0.6322], qb:[0.6051, 0.6051, 0.6051], phi:[0.5487]] [X:[], M:[[-7, -7, 0, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ M_1\phi_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$ . -13 t^2.21 + t^3.29 + 3*t^3.63 + 6*t^3.71 + 3*t^3.99 + 2*t^4.07 + t^4.41 + 6*t^5.28 + 6*t^5.36 + 3*t^5.44 + t^5.5 + 3*t^5.84 - 13*t^6. - 6*t^6.08 + 3*t^6.2 - 3*t^6.36 + t^6.58 + t^6.62 + 3*t^6.92 + 6*t^7. + 6*t^7.26 + 16*t^7.34 + 18*t^7.42 + 6*t^7.48 + 8*t^7.62 - 9*t^7.65 + 18*t^7.7 + t^7.71 - 6*t^7.73 + 9*t^7.79 + 3*t^8.04 - 10*t^8.21 - 3*t^8.35 + 6*t^8.37 + 3*t^8.41 - 2*t^8.43 + 3*t^8.57 + 6*t^8.65 - t^8.71 + 3*t^8.73 + t^8.79 + t^8.83 + 15*t^8.91 + 36*t^8.99 - t^4.65/y - t^6.85/y + t^7.35/y - t^7.94/y + t^8.44/y + t^8.5/y + (3*t^8.84)/y + (6*t^8.92)/y - t^4.65*y - t^6.85*y + t^7.35*y - t^7.94*y + t^8.44*y + t^8.5*y + 3*t^8.84*y + 6*t^8.92*y t^2.21/(g1^7*g2^7) + t^3.29/(g1^4*g2^4*g3^4*g4^4*g5^4) + g3^7*g4^7*t^3.63 + g3^7*g5^7*t^3.63 + g4^7*g5^7*t^3.63 + g1^7*g3^7*t^3.71 + g2^7*g3^7*t^3.71 + g1^7*g4^7*t^3.71 + g2^7*g4^7*t^3.71 + g1^7*g5^7*t^3.71 + g2^7*g5^7*t^3.71 + g1*g2*g3^8*g4*g5*t^3.99 + g1*g2*g3*g4^8*g5*t^3.99 + g1*g2*g3*g4*g5^8*t^3.99 + g1^8*g2*g3*g4*g5*t^4.07 + g1*g2^8*g3*g4*g5*t^4.07 + t^4.41/(g1^14*g2^14) + (g3^12*t^5.28)/(g1^2*g2^2*g4^2*g5^2) + (g3^5*g4^5*t^5.28)/(g1^2*g2^2*g5^2) + (g4^12*t^5.28)/(g1^2*g2^2*g3^2*g5^2) + (g3^5*g5^5*t^5.28)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.28)/(g1^2*g2^2*g3^2) + (g5^12*t^5.28)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g3^5*t^5.36)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.36)/(g1^2*g4^2*g5^2) + (g1^5*g4^5*t^5.36)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.36)/(g1^2*g3^2*g5^2) + (g1^5*g5^5*t^5.36)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.36)/(g1^2*g3^2*g4^2) + (g1^12*t^5.44)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.44)/(g3^2*g4^2*g5^2) + (g2^12*t^5.44)/(g1^2*g3^2*g4^2*g5^2) + t^5.5/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g3^7*g4^7*t^5.84)/(g1^7*g2^7) + (g3^7*g5^7*t^5.84)/(g1^7*g2^7) + (g4^7*g5^7*t^5.84)/(g1^7*g2^7) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.08)/g3^7 - (g2^7*t^6.08)/g3^7 - (g1^7*t^6.08)/g4^7 - (g2^7*t^6.08)/g4^7 - (g1^7*t^6.08)/g5^7 - (g2^7*t^6.08)/g5^7 + (g3^8*g4*g5*t^6.2)/(g1^6*g2^6) + (g3*g4^8*g5*t^6.2)/(g1^6*g2^6) + (g3*g4*g5^8*t^6.2)/(g1^6*g2^6) - (g1*g2*g3*g4*t^6.36)/g5^6 - (g1*g2*g3*g5*t^6.36)/g4^6 - (g1*g2*g4*g5*t^6.36)/g3^6 + t^6.58/(g1^8*g2^8*g3^8*g4^8*g5^8) + t^6.62/(g1^21*g2^21) + (g3^3*g4^3*t^6.92)/(g1^4*g2^4*g5^4) + (g3^3*g5^3*t^6.92)/(g1^4*g2^4*g4^4) + (g4^3*g5^3*t^6.92)/(g1^4*g2^4*g3^4) + (g1^3*g3^3*t^7.)/(g2^4*g4^4*g5^4) + (g2^3*g3^3*t^7.)/(g1^4*g4^4*g5^4) + (g1^3*g4^3*t^7.)/(g2^4*g3^4*g5^4) + (g2^3*g4^3*t^7.)/(g1^4*g3^4*g5^4) + (g1^3*g5^3*t^7.)/(g2^4*g3^4*g4^4) + (g2^3*g5^3*t^7.)/(g1^4*g3^4*g4^4) + g3^14*g4^14*t^7.26 + g3^14*g4^7*g5^7*t^7.26 + g3^7*g4^14*g5^7*t^7.26 + g3^14*g5^14*t^7.26 + g3^7*g4^7*g5^14*t^7.26 + g4^14*g5^14*t^7.26 + g1^7*g3^14*g4^7*t^7.34 + g2^7*g3^14*g4^7*t^7.34 + g1^7*g3^7*g4^14*t^7.34 + g2^7*g3^7*g4^14*t^7.34 + g1^7*g3^14*g5^7*t^7.34 + g2^7*g3^14*g5^7*t^7.34 + 2*g1^7*g3^7*g4^7*g5^7*t^7.34 + 2*g2^7*g3^7*g4^7*g5^7*t^7.34 + g1^7*g4^14*g5^7*t^7.34 + g2^7*g4^14*g5^7*t^7.34 + g1^7*g3^7*g5^14*t^7.34 + g2^7*g3^7*g5^14*t^7.34 + g1^7*g4^7*g5^14*t^7.34 + g2^7*g4^7*g5^14*t^7.34 + g1^14*g3^14*t^7.42 + g1^7*g2^7*g3^14*t^7.42 + g2^14*g3^14*t^7.42 + g1^14*g3^7*g4^7*t^7.42 + g1^7*g2^7*g3^7*g4^7*t^7.42 + g2^14*g3^7*g4^7*t^7.42 + g1^14*g4^14*t^7.42 + g1^7*g2^7*g4^14*t^7.42 + g2^14*g4^14*t^7.42 + g1^14*g3^7*g5^7*t^7.42 + g1^7*g2^7*g3^7*g5^7*t^7.42 + g2^14*g3^7*g5^7*t^7.42 + g1^14*g4^7*g5^7*t^7.42 + g1^7*g2^7*g4^7*g5^7*t^7.42 + g2^14*g4^7*g5^7*t^7.42 + g1^14*g5^14*t^7.42 + g1^7*g2^7*g5^14*t^7.42 + g2^14*g5^14*t^7.42 + (g3^12*t^7.48)/(g1^9*g2^9*g4^2*g5^2) + (g3^5*g4^5*t^7.48)/(g1^9*g2^9*g5^2) + (g4^12*t^7.48)/(g1^9*g2^9*g3^2*g5^2) + (g3^5*g5^5*t^7.48)/(g1^9*g2^9*g4^2) + (g4^5*g5^5*t^7.48)/(g1^9*g2^9*g3^2) + (g5^12*t^7.48)/(g1^9*g2^9*g3^2*g4^2) + g1*g2*g3^15*g4^8*g5*t^7.62 + g1*g2*g3^8*g4^15*g5*t^7.62 + g1*g2*g3^15*g4*g5^8*t^7.62 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.62 + g1*g2*g3*g4^15*g5^8*t^7.62 + g1*g2*g3^8*g4*g5^15*t^7.62 + g1*g2*g3*g4^8*g5^15*t^7.62 - (g3^5*t^7.65)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.65)/(g1^2*g2^2*g3^2*g5^9) - (g3^5*t^7.65)/(g1^2*g2^2*g4^9*g5^2) - (3*t^7.65)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g4^5*t^7.65)/(g1^2*g2^2*g3^9*g5^2) - (g5^5*t^7.65)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.65)/(g1^2*g2^2*g3^9*g4^2) + g1^8*g2*g3^15*g4*g5*t^7.7 + g1*g2^8*g3^15*g4*g5*t^7.7 + 2*g1^8*g2*g3^8*g4^8*g5*t^7.7 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.7 + g1^8*g2*g3*g4^15*g5*t^7.7 + g1*g2^8*g3*g4^15*g5*t^7.7 + 2*g1^8*g2*g3^8*g4*g5^8*t^7.7 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.7 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.7 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.7 + g1^8*g2*g3*g4*g5^15*t^7.7 + g1*g2^8*g3*g4*g5^15*t^7.7 + t^7.71/(g1^18*g2^18*g3^4*g4^4*g5^4) - (g1^5*t^7.73)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.73)/(g1^2*g3^2*g4^2*g5^9) - (g1^5*t^7.73)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.73)/(g1^2*g3^2*g4^9*g5^2) - (g1^5*t^7.73)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.73)/(g1^2*g3^9*g4^2*g5^2) + g1^15*g2*g3^8*g4*g5*t^7.79 + g1^8*g2^8*g3^8*g4*g5*t^7.79 + g1*g2^15*g3^8*g4*g5*t^7.79 + g1^15*g2*g3*g4^8*g5*t^7.79 + g1^8*g2^8*g3*g4^8*g5*t^7.79 + g1*g2^15*g3*g4^8*g5*t^7.79 + g1^15*g2*g3*g4*g5^8*t^7.79 + g1^8*g2^8*g3*g4*g5^8*t^7.79 + g1*g2^15*g3*g4*g5^8*t^7.79 + (g3^7*g4^7*t^8.04)/(g1^14*g2^14) + (g3^7*g5^7*t^8.04)/(g1^14*g2^14) + (g4^7*g5^7*t^8.04)/(g1^14*g2^14) - (4*t^8.21)/(g1^7*g2^7) - (g3^7*t^8.21)/(g1^7*g2^7*g4^7) - (g4^7*t^8.21)/(g1^7*g2^7*g3^7) - (g3^7*t^8.21)/(g1^7*g2^7*g5^7) - (g4^7*t^8.21)/(g1^7*g2^7*g5^7) - (g5^7*t^8.21)/(g1^7*g2^7*g3^7) - (g5^7*t^8.21)/(g1^7*g2^7*g4^7) - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.35 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.35 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.35 + t^8.37/g3^14 + t^8.37/g4^14 + t^8.37/(g3^7*g4^7) + t^8.37/g5^14 + t^8.37/(g3^7*g5^7) + t^8.37/(g4^7*g5^7) + (g3^8*g4*g5*t^8.41)/(g1^13*g2^13) + (g3*g4^8*g5*t^8.41)/(g1^13*g2^13) + (g3*g4*g5^8*t^8.41)/(g1^13*g2^13) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.43 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.43 + (g3^8*t^8.57)/(g1^6*g2^6*g4^6*g5^6) + (g4^8*t^8.57)/(g1^6*g2^6*g3^6*g5^6) + (g5^8*t^8.57)/(g1^6*g2^6*g3^6*g4^6) + (g1*g3*t^8.65)/(g2^6*g4^6*g5^6) + (g2*g3*t^8.65)/(g1^6*g4^6*g5^6) + (g1*g4*t^8.65)/(g2^6*g3^6*g5^6) + (g2*g4*t^8.65)/(g1^6*g3^6*g5^6) + (g1*g5*t^8.65)/(g2^6*g3^6*g4^6) + (g2*g5*t^8.65)/(g1^6*g3^6*g4^6) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.71 + (g1^8*t^8.73)/(g2^6*g3^6*g4^6*g5^6) + (g1*g2*t^8.73)/(g3^6*g4^6*g5^6) + (g2^8*t^8.73)/(g1^6*g3^6*g4^6*g5^6) + t^8.79/(g1^15*g2^15*g3^8*g4^8*g5^8) + t^8.83/(g1^28*g2^28) + (g3^19*g4^5*t^8.91)/(g1^2*g2^2*g5^2) + (g3^12*g4^12*t^8.91)/(g1^2*g2^2*g5^2) + (g3^5*g4^19*t^8.91)/(g1^2*g2^2*g5^2) + (g3^19*g5^5*t^8.91)/(g1^2*g2^2*g4^2) + (2*g3^12*g4^5*g5^5*t^8.91)/(g1^2*g2^2) + (2*g3^5*g4^12*g5^5*t^8.91)/(g1^2*g2^2) + (g4^19*g5^5*t^8.91)/(g1^2*g2^2*g3^2) + (g3^12*g5^12*t^8.91)/(g1^2*g2^2*g4^2) + (2*g3^5*g4^5*g5^12*t^8.91)/(g1^2*g2^2) + (g4^12*g5^12*t^8.91)/(g1^2*g2^2*g3^2) + (g3^5*g5^19*t^8.91)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.91)/(g1^2*g2^2*g3^2) + (g1^5*g3^19*t^8.99)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.99)/(g1^2*g4^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.99)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.99)/(g1^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.99)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.99)/(g1^2*g5^2) + (g1^5*g4^19*t^8.99)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.99)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^12*g5^5*t^8.99)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.99)/(g1^2*g4^2) + (3*g1^5*g3^5*g4^5*g5^5*t^8.99)/g2^2 + (3*g2^5*g3^5*g4^5*g5^5*t^8.99)/g1^2 + (2*g1^5*g4^12*g5^5*t^8.99)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.99)/(g1^2*g3^2) + (2*g1^5*g3^5*g5^12*t^8.99)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.99)/(g1^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.99)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.99)/(g1^2*g3^2) + (g1^5*g5^19*t^8.99)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.99)/(g1^2*g3^2*g4^2) - t^4.65/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.85/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.35)/y - t^7.94/(g1^6*g2^6*g3^6*g4^6*g5^6*y) + (g1^5*g2^5*t^8.44)/(g3^2*g4^2*g5^2*y) + t^8.5/(g1^11*g2^11*g3^4*g4^4*g5^4*y) + (g3^7*g4^7*t^8.84)/(g1^7*g2^7*y) + (g3^7*g5^7*t^8.84)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.84)/(g1^7*g2^7*y) + (g3^7*t^8.92)/(g1^7*y) + (g3^7*t^8.92)/(g2^7*y) + (g4^7*t^8.92)/(g1^7*y) + (g4^7*t^8.92)/(g2^7*y) + (g5^7*t^8.92)/(g1^7*y) + (g5^7*t^8.92)/(g2^7*y) - (t^4.65*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.85*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.35*y - (t^7.94*y)/(g1^6*g2^6*g3^6*g4^6*g5^6) + (g1^5*g2^5*t^8.44*y)/(g3^2*g4^2*g5^2) + (t^8.5*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g3^7*g4^7*t^8.84*y)/(g1^7*g2^7) + (g3^7*g5^7*t^8.84*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.84*y)/(g1^7*g2^7) + (g3^7*t^8.92*y)/g1^7 + (g3^7*t^8.92*y)/g2^7 + (g4^7*t^8.92*y)/g1^7 + (g4^7*t^8.92*y)/g2^7 + (g5^7*t^8.92*y)/g1^7 + (g5^7*t^8.92*y)/g2^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55677 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ 0.8923 1.1009 0.8105 [X:[], M:[0.7357, 0.6684], q:[0.7258, 0.6322, 0.6322], qb:[0.6058, 0.6051, 0.6051], phi:[0.5485]] t^2.01 + t^2.21 + t^3.29 + 3*t^3.63 + 6*t^3.71 + 2*t^3.99 + t^4.01 + 2*t^4.07 + t^4.21 + t^4.41 + 6*t^5.28 + t^5.3 + 6*t^5.36 + 3*t^5.44 + t^5.5 + 3*t^5.64 + 6*t^5.72 + 3*t^5.84 - 11*t^6. - t^4.65/y - t^4.65*y detail
55689 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ 0.8908 1.0945 0.8139 [X:[], M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 3*t^3.75 + 2*t^3.99 + 2*t^4.06 + t^4.14 + 3*t^4.35 + 3*t^5.24 + 4*t^5.31 + 5*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + 2*t^5.79 + 6*t^5.86 - 9*t^6. - t^4.63/y - t^4.63*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55429 SU2adj1nf3 $\phi_1q_1^2$ 0.8526 1.0268 0.8304 [X:[], M:[], q:[0.7213, 0.6098, 0.6098], qb:[0.6098, 0.6098, 0.6098], phi:[0.5574]] t^3.34 + 10*t^3.66 + 5*t^3.99 + 15*t^5.33 - 25*t^6. - t^4.67/y - t^4.67*y detail