Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55365 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ | 0.6596 | 0.8332 | 0.7916 | [M:[1.1456, 0.7427, 0.8544, 0.7847, 1.2363, 0.6939, 0.673], q:[0.3923, 0.4621], qb:[0.8649, 0.7532], phi:[0.3819]] | [M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [2, 2], [-11, -13], [-7, -7]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{7}$, ${ }M_{1}M_{6}$, ${ }M_{7}\phi_{1}q_{1}^{2}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}q_{1}q_{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$ | ${}$ | -2 | t^2.019 + t^2.082 + t^2.228 + t^2.354 + t^2.563 + t^3.437 + t^3.5 + 2*t^3.709 + t^4.038 + t^4.101 + t^4.164 + t^4.247 + t^4.31 + t^4.373 + t^4.436 + t^4.456 + 2*t^4.582 + t^4.645 + t^4.708 + t^4.792 + t^4.854 + t^4.917 + t^5.127 + t^5.456 + 2*t^5.518 + t^5.581 + t^5.665 + 2*t^5.728 + 2*t^5.791 + t^5.854 + t^5.937 - 2*t^6. + t^6.057 + 2*t^6.063 + t^6.12 + t^6.182 - t^6.209 + t^6.245 + t^6.266 + t^6.272 + t^6.329 + 2*t^6.392 + t^6.455 + t^6.475 + t^6.518 + t^6.538 + 2*t^6.601 + 2*t^6.664 + t^6.685 + 2*t^6.727 + t^6.79 + 2*t^6.81 + 2*t^6.873 + 3*t^6.936 + 2*t^6.999 + t^7.02 + t^7.062 + t^7.146 + 2*t^7.208 + t^7.271 - t^7.355 + t^7.474 + 2*t^7.537 + 2*t^7.6 - t^7.627 + t^7.663 + t^7.684 + 3*t^7.747 + 2*t^7.81 + 3*t^7.872 + t^7.893 + t^7.935 + t^7.956 - t^8.019 + t^8.075 + t^8.138 + 2*t^8.145 + t^8.165 + t^8.201 + t^8.208 - 3*t^8.228 + t^8.264 + t^8.285 + t^8.291 + t^8.327 + t^8.348 - 2*t^8.354 + 2*t^8.411 + 2*t^8.417 - t^8.437 + 2*t^8.474 + t^8.494 - t^8.5 + t^8.537 + t^8.557 - 3*t^8.563 + t^8.599 + 3*t^8.62 + 2*t^8.683 + t^8.703 + 3*t^8.746 + t^8.766 - 2*t^8.773 + 2*t^8.809 + 2*t^8.829 + t^8.872 + 3*t^8.892 + t^8.913 + 4*t^8.955 - t^4.146/y - t^6.164/y - t^6.227/y - t^6.374/y - t^6.5/y + t^7.101/y + t^7.247/y + t^7.31/y + t^7.373/y + t^7.436/y + (2*t^7.582)/y + t^7.645/y + (2*t^7.792)/y + (2*t^7.917)/y + t^8.064/y + t^8.127/y - t^8.183/y - t^8.246/y - t^8.309/y - t^8.393/y + t^8.518/y - t^8.602/y + t^8.665/y + (2*t^8.728)/y + (3*t^8.791)/y + (2*t^8.937)/y - t^4.146*y - t^6.164*y - t^6.227*y - t^6.374*y - t^6.5*y + t^7.101*y + t^7.247*y + t^7.31*y + t^7.373*y + t^7.436*y + 2*t^7.582*y + t^7.645*y + 2*t^7.792*y + 2*t^7.917*y + t^8.064*y + t^8.127*y - t^8.183*y - t^8.246*y - t^8.309*y - t^8.393*y + t^8.518*y - t^8.602*y + t^8.665*y + 2*t^8.728*y + 3*t^8.791*y + 2*t^8.937*y | t^2.019/(g1^7*g2^7) + t^2.082/(g1^11*g2^13) + g1^2*g2^4*t^2.228 + t^2.354/(g1^6*g2^8) + g1^3*g2^3*t^2.563 + t^3.437/(g1^3*g2^3) + t^3.5/(g1^7*g2^9) + 2*g1^2*g2^2*t^3.709 + t^4.038/(g1^14*g2^14) + t^4.101/(g1^18*g2^20) + t^4.164/(g1^22*g2^26) + t^4.247/(g1^5*g2^3) + t^4.31/(g1^9*g2^9) + t^4.373/(g1^13*g2^15) + t^4.436/(g1^17*g2^21) + g1^4*g2^8*t^4.456 + (2*t^4.582)/(g1^4*g2^4) + t^4.645/(g1^8*g2^10) + t^4.708/(g1^12*g2^16) + g1^5*g2^7*t^4.792 + g1*g2*t^4.854 + t^4.917/(g1^3*g2^5) + g1^6*g2^6*t^5.127 + t^5.456/(g1^10*g2^10) + (2*t^5.518)/(g1^14*g2^16) + t^5.581/(g1^18*g2^22) + (g2*t^5.665)/g1 + (2*t^5.728)/(g1^5*g2^5) + (2*t^5.791)/(g1^9*g2^11) + t^5.854/(g1^13*g2^17) + g1^4*g2^6*t^5.937 - 2*t^6. + t^6.057/(g1^21*g2^21) + (2*t^6.063)/(g1^4*g2^6) + t^6.12/(g1^25*g2^27) + t^6.182/(g1^29*g2^33) - g1^9*g2^11*t^6.209 + t^6.245/(g1^33*g2^39) + t^6.266/(g1^12*g2^10) + g1^5*g2^5*t^6.272 + t^6.329/(g1^16*g2^16) + (2*t^6.392)/(g1^20*g2^22) + t^6.455/(g1^24*g2^28) + (g2*t^6.475)/g1^3 + t^6.518/(g1^28*g2^34) + t^6.538/(g1^7*g2^5) + (2*t^6.601)/(g1^11*g2^11) + (2*t^6.664)/(g1^15*g2^17) + g1^6*g2^12*t^6.685 + (2*t^6.727)/(g1^19*g2^23) + t^6.79/(g1^23*g2^29) + (2*t^6.81)/g1^2 + (2*t^6.873)/(g1^6*g2^6) + (3*t^6.936)/(g1^10*g2^12) + (2*t^6.999)/(g1^14*g2^18) + g1^7*g2^11*t^7.02 + t^7.062/(g1^18*g2^24) + t^7.146/(g1*g2) + (2*t^7.208)/(g1^5*g2^7) + t^7.271/(g1^9*g2^13) - g1^8*g2^10*t^7.355 + t^7.474/(g1^17*g2^17) + (2*t^7.537)/(g1^21*g2^23) + (2*t^7.6)/(g1^25*g2^29) - g1^13*g2^15*t^7.627 + t^7.663/(g1^29*g2^35) + t^7.684/(g1^8*g2^6) + (3*t^7.747)/(g1^12*g2^12) + (2*t^7.81)/(g1^16*g2^18) + (3*t^7.872)/(g1^20*g2^24) + g1*g2^5*t^7.893 + t^7.935/(g1^24*g2^30) + t^7.956/(g1^3*g2) - t^8.019/(g1^7*g2^7) + t^8.075/(g1^28*g2^28) + t^8.138/(g1^32*g2^34) + (2*t^8.145)/(g1^15*g2^19) + g1^6*g2^10*t^8.165 + t^8.201/(g1^36*g2^40) + t^8.208/(g1^19*g2^25) - 3*g1^2*g2^4*t^8.228 + t^8.264/(g1^40*g2^46) + t^8.285/(g1^19*g2^17) + t^8.291/(g1^2*g2^2) + t^8.327/(g1^44*g2^52) + t^8.348/(g1^23*g2^23) - (2*t^8.354)/(g1^6*g2^8) + (2*t^8.411)/(g1^27*g2^29) + (2*t^8.417)/(g1^10*g2^14) - g1^11*g2^15*t^8.437 + (2*t^8.474)/(g1^31*g2^35) + t^8.494/(g1^10*g2^6) - g1^7*g2^9*t^8.5 + t^8.537/(g1^35*g2^41) + t^8.557/(g1^14*g2^12) - 3*g1^3*g2^3*t^8.563 + t^8.599/(g1^39*g2^47) + (3*t^8.62)/(g1^18*g2^18) + (2*t^8.683)/(g1^22*g2^24) + (g2^5*t^8.703)/g1 + (3*t^8.746)/(g1^26*g2^30) + t^8.766/(g1^5*g2) - 2*g1^12*g2^14*t^8.773 + (2*t^8.809)/(g1^30*g2^36) + (2*t^8.829)/(g1^9*g2^7) + t^8.872/(g1^34*g2^42) + (3*t^8.892)/(g1^13*g2^13) + g1^8*g2^16*t^8.913 + (4*t^8.955)/(g1^17*g2^19) - t^4.146/(g1*g2*y) - t^6.164/(g1^8*g2^8*y) - t^6.227/(g1^12*g2^14*y) - (g1*g2^3*t^6.374)/y - t^6.5/(g1^7*g2^9*y) + t^7.101/(g1^18*g2^20*y) + t^7.247/(g1^5*g2^3*y) + t^7.31/(g1^9*g2^9*y) + t^7.373/(g1^13*g2^15*y) + t^7.436/(g1^17*g2^21*y) + (2*t^7.582)/(g1^4*g2^4*y) + t^7.645/(g1^8*g2^10*y) + (2*g1^5*g2^7*t^7.792)/y + (2*t^7.917)/(g1^3*g2^5*y) + (g1^10*g2^12*t^8.064)/y + (g1^6*g2^6*t^8.127)/y - t^8.183/(g1^15*g2^15*y) - t^8.246/(g1^19*g2^21*y) - t^8.309/(g1^23*g2^27*y) - t^8.393/(g1^6*g2^4*y) + t^8.518/(g1^14*g2^16*y) - (g1^3*g2^7*t^8.602)/y + (g2*t^8.665)/(g1*y) + (2*t^8.728)/(g1^5*g2^5*y) + (3*t^8.791)/(g1^9*g2^11*y) + (2*g1^4*g2^6*t^8.937)/y - (t^4.146*y)/(g1*g2) - (t^6.164*y)/(g1^8*g2^8) - (t^6.227*y)/(g1^12*g2^14) - g1*g2^3*t^6.374*y - (t^6.5*y)/(g1^7*g2^9) + (t^7.101*y)/(g1^18*g2^20) + (t^7.247*y)/(g1^5*g2^3) + (t^7.31*y)/(g1^9*g2^9) + (t^7.373*y)/(g1^13*g2^15) + (t^7.436*y)/(g1^17*g2^21) + (2*t^7.582*y)/(g1^4*g2^4) + (t^7.645*y)/(g1^8*g2^10) + 2*g1^5*g2^7*t^7.792*y + (2*t^7.917*y)/(g1^3*g2^5) + g1^10*g2^12*t^8.064*y + g1^6*g2^6*t^8.127*y - (t^8.183*y)/(g1^15*g2^15) - (t^8.246*y)/(g1^19*g2^21) - (t^8.309*y)/(g1^23*g2^27) - (t^8.393*y)/(g1^6*g2^4) + (t^8.518*y)/(g1^14*g2^16) - g1^3*g2^7*t^8.602*y + (g2*t^8.665*y)/g1 + (2*t^8.728*y)/(g1^5*g2^5) + (3*t^8.791*y)/(g1^9*g2^11) + 2*g1^4*g2^6*t^8.937*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
56979 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{2}X_{1}$ | 0.571 | 0.696 | 0.8204 | [X:[1.4387], M:[1.1821, 0.5613, 0.8179, 1.0149, 1.2119, 0.9851, 0.7583], q:[0.5074, 0.3104], qb:[0.9313, 0.6747], phi:[0.394]] | t^2.275 + t^2.454 + t^2.955 + t^3.045 + t^3.546 + 2*t^3.636 + t^4.227 + t^4.316 + t^4.55 + t^4.728 + t^4.818 + t^4.907 + t^5.23 + t^5.498 + t^5.821 + 2*t^5.911 - t^6. - t^4.182/y - t^4.182*y | detail | |
56977 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{6}M_{7}$ | 0.5757 | 0.7182 | 0.8016 | [M:[1.2798, 0.8254, 0.7202, 0.8809, 1.1468, 1.0139, 0.9861], q:[0.4405, 0.2798], qb:[0.7341, 0.8393], phi:[0.4266]] | t^2.161 + t^2.476 + t^2.643 + t^2.958 + t^3.042 + 2*t^3.44 + t^3.839 + t^3.923 + t^4.321 + t^4.637 + t^4.72 + t^4.803 + t^4.953 + 2*t^5.119 + t^5.202 + t^5.286 + t^5.435 + 2*t^5.601 + t^5.684 + 2*t^5.917 - t^6. - t^4.28/y - t^4.28*y | detail | |
56976 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{7}^{2}$ | 0.5849 | 0.7338 | 0.797 | [M:[1.2857, 0.9551, 0.7143, 0.7592, 1.1429, 0.902, 1.0], q:[0.3796, 0.3347], qb:[0.6653, 0.9061], phi:[0.4286]] | t^2.143 + t^2.277 + t^2.706 + t^2.865 + t^3. + 2*t^3.429 + t^3.563 + t^3.857 + t^4.286 + t^4.42 + t^4.555 + t^4.714 + t^4.849 + t^4.984 + t^5.008 + 2*t^5.143 + t^5.277 + t^5.412 + 2*t^5.571 + 3*t^5.706 + t^5.731 + t^5.841 - t^6. - t^4.286/y - t^4.286*y | detail | |
56982 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ | 0.6748 | 0.8586 | 0.7859 | [M:[1.1468, 0.7202, 0.8532, 0.8089, 1.2355, 0.7202, 0.6758, 0.8089], q:[0.4044, 0.4488], qb:[0.8754, 0.7423], phi:[0.3823]] | t^2.027 + 2*t^2.161 + 2*t^2.427 + t^2.56 + t^3.44 + 2*t^3.706 + t^4.055 + 2*t^4.188 + 3*t^4.321 + 2*t^4.454 + 5*t^4.587 + 2*t^4.72 + 4*t^4.853 + 2*t^4.986 + t^5.119 + t^5.468 + 2*t^5.601 + t^5.734 + 4*t^5.867 - 2*t^6. - t^4.147/y - t^4.147*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47025 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.6388 | 0.7919 | 0.8066 | [M:[1.147, 0.7449, 0.853, 0.7844, 1.2353, 0.696], q:[0.3922, 0.4608], qb:[0.8629, 0.7548], phi:[0.3823]] | t^2.088 + t^2.235 + t^2.353 + t^2.559 + t^3.441 + t^3.5 + 2*t^3.706 + t^3.971 + t^4.176 + t^4.323 + t^4.441 + t^4.469 + t^4.588 + t^4.647 + t^4.707 + t^4.794 + t^4.853 + t^4.912 + t^5.118 + t^5.529 + t^5.588 + t^5.676 + 2*t^5.794 + t^5.854 + t^5.941 - 2*t^6. - t^4.147/y - t^4.147*y | detail |