Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56982 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_7q_2\tilde{q}_1$ + $ M_8\phi_1q_1^2$ | 0.6748 | 0.8586 | 0.7859 | [X:[], M:[1.1468, 0.7202, 0.8532, 0.8089, 1.2355, 0.7202, 0.6758, 0.8089], q:[0.4044, 0.4488], qb:[0.8754, 0.7423], phi:[0.3823]] | [X:[], M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [2, 2], [-11, -13], [-7, -7], [7, 9]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_2$, $ M_4$, $ M_8$, $ M_3$, $ M_1$, $ M_5$, $ \phi_1q_1q_2$, $ M_7^2$, $ M_6M_7$, $ M_2M_7$, $ M_6^2$, $ M_2M_6$, $ M_2^2$, $ M_4M_7$, $ M_7M_8$, $ M_4M_6$, $ M_2M_4$, $ M_3M_7$, $ M_6M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_8$, $ M_3M_6$, $ M_2M_3$, $ \phi_1q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_8$, $ \tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_8$, $ M_3^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_7$, $ M_1M_6$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ M_5M_7$, $ M_7\phi_1q_1q_2$, $ M_1M_4$, $ M_5M_6$, $ M_6\phi_1q_1q_2$, $ M_2M_5$, $ M_1M_8$ | . | -2 | t^2.03 + 2*t^2.16 + 2*t^2.43 + t^2.56 + t^3.44 + 2*t^3.71 + t^4.05 + 2*t^4.19 + 3*t^4.32 + 2*t^4.45 + 5*t^4.59 + 2*t^4.72 + 4*t^4.85 + 2*t^4.99 + t^5.12 + t^5.47 + 2*t^5.6 + t^5.73 + 4*t^5.87 - 2*t^6. + t^6.08 + 2*t^6.13 + 2*t^6.22 + t^6.27 + 3*t^6.35 + 6*t^6.48 + 5*t^6.61 + 8*t^6.75 + 7*t^6.88 + 8*t^7.01 + 4*t^7.15 + 4*t^7.28 + 3*t^7.41 + t^7.5 + 2*t^7.63 + 4*t^7.76 + 2*t^7.89 + 4*t^8.03 + t^8.11 - 4*t^8.16 + 2*t^8.24 + 4*t^8.29 + 3*t^8.38 - 6*t^8.43 + 6*t^8.51 + 10*t^8.64 - 2*t^8.69 + 8*t^8.78 + 15*t^8.91 - t^4.15/y - t^6.17/y - (2*t^6.31)/y - (2*t^6.57)/y + (2*t^7.19)/y + t^7.32/y + (2*t^7.45)/y + (5*t^7.59)/y + (4*t^7.72)/y + t^7.85/y + (4*t^7.99)/y + t^8.12/y - t^8.2/y - (2*t^8.33)/y - (2*t^8.47)/y - (2*t^8.73)/y + (6*t^8.87)/y - t^4.15*y - t^6.17*y - 2*t^6.31*y - 2*t^6.57*y + 2*t^7.19*y + t^7.32*y + 2*t^7.45*y + 5*t^7.59*y + 4*t^7.72*y + t^7.85*y + 4*t^7.99*y + t^8.12*y - t^8.2*y - 2*t^8.33*y - 2*t^8.47*y - 2*t^8.73*y + 6*t^8.87*y | t^2.03/(g1^7*g2^7) + t^2.16/(g1^11*g2^13) + g1^2*g2^4*t^2.16 + t^2.43/(g1^6*g2^8) + g1^7*g2^9*t^2.43 + g1^3*g2^3*t^2.56 + t^3.44/(g1^3*g2^3) + 2*g1^2*g2^2*t^3.71 + t^4.05/(g1^14*g2^14) + t^4.19/(g1^18*g2^20) + t^4.19/(g1^5*g2^3) + t^4.32/(g1^22*g2^26) + t^4.32/(g1^9*g2^9) + g1^4*g2^8*t^4.32 + t^4.45/(g1^13*g2^15) + g2^2*t^4.45 + t^4.59/(g1^17*g2^21) + (3*t^4.59)/(g1^4*g2^4) + g1^9*g2^13*t^4.59 + t^4.72/(g1^8*g2^10) + g1^5*g2^7*t^4.72 + t^4.85/(g1^12*g2^16) + 2*g1*g2*t^4.85 + g1^14*g2^18*t^4.85 + t^4.99/(g1^3*g2^5) + g1^10*g2^12*t^4.99 + g1^6*g2^6*t^5.12 + t^5.47/(g1^10*g2^10) + t^5.6/(g1^14*g2^16) + (g2*t^5.6)/g1 + t^5.73/(g1^5*g2^5) + (2*t^5.87)/(g1^9*g2^11) + 2*g1^4*g2^6*t^5.87 - 2*t^6. + t^6.08/(g1^21*g2^21) + t^6.13/(g1^4*g2^6) + g1^9*g2^11*t^6.13 + t^6.22/(g1^25*g2^27) + t^6.22/(g1^12*g2^10) + g1^5*g2^5*t^6.27 + t^6.35/(g1^29*g2^33) + t^6.35/(g1^16*g2^16) + (g2*t^6.35)/g1^3 + t^6.48/(g1^33*g2^39) + (2*t^6.48)/(g1^20*g2^22) + (2*t^6.48)/(g1^7*g2^5) + g1^6*g2^12*t^6.48 + t^6.61/(g1^24*g2^28) + (3*t^6.61)/(g1^11*g2^11) + g1^2*g2^6*t^6.61 + (3*t^6.75)/g1^2 + t^6.75/(g1^28*g2^34) + (3*t^6.75)/(g1^15*g2^17) + g1^11*g2^17*t^6.75 + (2*t^6.88)/(g1^19*g2^23) + (3*t^6.88)/(g1^6*g2^6) + 2*g1^7*g2^11*t^6.88 + t^7.01/(g1^23*g2^29) + (3*t^7.01)/(g1^10*g2^12) + 3*g1^3*g2^5*t^7.01 + g1^16*g2^22*t^7.01 + t^7.15/(g1^14*g2^18) + (2*t^7.15)/(g1*g2) + g1^12*g2^16*t^7.15 + t^7.28/(g1^18*g2^24) + t^7.28/(g1^5*g2^7) + g1^8*g2^10*t^7.28 + g1^21*g2^27*t^7.28 + t^7.41/(g1^9*g2^13) + g1^4*g2^4*t^7.41 + g1^17*g2^21*t^7.41 + t^7.5/(g1^17*g2^17) + t^7.63/(g1^21*g2^23) + t^7.63/(g1^8*g2^6) + t^7.76/(g1^25*g2^29) + (2*t^7.76)/(g1^12*g2^12) + g1*g2^5*t^7.76 + t^7.89/(g1^16*g2^18) + t^7.89/(g1^3*g2) + (2*t^8.03)/(g1^20*g2^24) + 2*g1^6*g2^10*t^8.03 + t^8.11/(g1^28*g2^28) - (2*t^8.16)/(g1^11*g2^13) - 2*g1^2*g2^4*t^8.16 + t^8.24/(g1^32*g2^34) + t^8.24/(g1^19*g2^17) + t^8.29/(g1^15*g2^19) + (2*t^8.29)/(g1^2*g2^2) + g1^11*g2^15*t^8.29 + t^8.38/(g1^36*g2^40) + t^8.38/(g1^23*g2^23) + t^8.38/(g1^10*g2^6) - (3*t^8.43)/(g1^6*g2^8) - 3*g1^7*g2^9*t^8.43 + t^8.51/(g1^40*g2^46) + (2*t^8.51)/(g1^27*g2^29) + (2*t^8.51)/(g1^14*g2^12) + (g2^5*t^8.51)/g1 + t^8.56/(g1^10*g2^14) - 2*g1^3*g2^3*t^8.56 + g1^16*g2^20*t^8.56 + t^8.64/(g1^44*g2^52) + (2*t^8.64)/(g1^31*g2^35) + (4*t^8.64)/(g1^18*g2^18) + (2*t^8.64)/(g1^5*g2) + g1^8*g2^16*t^8.64 - t^8.69/(g1*g2^3) - g1^12*g2^14*t^8.69 + t^8.78/(g1^35*g2^41) + (3*t^8.78)/(g1^22*g2^24) + (3*t^8.78)/(g1^9*g2^7) + g1^4*g2^10*t^8.78 + t^8.91/(g1^39*g2^47) + (4*t^8.91)/(g1^26*g2^30) + (5*t^8.91)/(g1^13*g2^13) + 4*g2^4*t^8.91 + g1^13*g2^21*t^8.91 - t^4.15/(g1*g2*y) - t^6.17/(g1^8*g2^8*y) - t^6.31/(g1^12*g2^14*y) - (g1*g2^3*t^6.31)/y - t^6.57/(g1^7*g2^9*y) - (g1^6*g2^8*t^6.57)/y + t^7.19/(g1^18*g2^20*y) + t^7.19/(g1^5*g2^3*y) + t^7.32/(g1^9*g2^9*y) + t^7.45/(g1^13*g2^15*y) + (g2^2*t^7.45)/y + t^7.59/(g1^17*g2^21*y) + (3*t^7.59)/(g1^4*g2^4*y) + (g1^9*g2^13*t^7.59)/y + (2*t^7.72)/(g1^8*g2^10*y) + (2*g1^5*g2^7*t^7.72)/y + (g1*g2*t^7.85)/y + (2*t^7.99)/(g1^3*g2^5*y) + (2*g1^10*g2^12*t^7.99)/y + (g1^6*g2^6*t^8.12)/y - t^8.2/(g1^15*g2^15*y) - t^8.33/(g1^19*g2^21*y) - t^8.33/(g1^6*g2^4*y) - t^8.47/(g1^23*g2^27*y) - (g1^3*g2^7*t^8.47)/y - t^8.73/(g1^18*g2^22*y) - (g1^8*g2^12*t^8.73)/y + (3*t^8.87)/(g1^9*g2^11*y) + (3*g1^4*g2^6*t^8.87)/y - (t^4.15*y)/(g1*g2) - (t^6.17*y)/(g1^8*g2^8) - (t^6.31*y)/(g1^12*g2^14) - g1*g2^3*t^6.31*y - (t^6.57*y)/(g1^7*g2^9) - g1^6*g2^8*t^6.57*y + (t^7.19*y)/(g1^18*g2^20) + (t^7.19*y)/(g1^5*g2^3) + (t^7.32*y)/(g1^9*g2^9) + (t^7.45*y)/(g1^13*g2^15) + g2^2*t^7.45*y + (t^7.59*y)/(g1^17*g2^21) + (3*t^7.59*y)/(g1^4*g2^4) + g1^9*g2^13*t^7.59*y + (2*t^7.72*y)/(g1^8*g2^10) + 2*g1^5*g2^7*t^7.72*y + g1*g2*t^7.85*y + (2*t^7.99*y)/(g1^3*g2^5) + 2*g1^10*g2^12*t^7.99*y + g1^6*g2^6*t^8.12*y - (t^8.2*y)/(g1^15*g2^15) - (t^8.33*y)/(g1^19*g2^21) - (t^8.33*y)/(g1^6*g2^4) - (t^8.47*y)/(g1^23*g2^27) - g1^3*g2^7*t^8.47*y - (t^8.73*y)/(g1^18*g2^22) - g1^8*g2^12*t^8.73*y + (3*t^8.87*y)/(g1^9*g2^11) + 3*g1^4*g2^6*t^8.87*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55365 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_7q_2\tilde{q}_1$ | 0.6596 | 0.8332 | 0.7916 | [X:[], M:[1.1456, 0.7427, 0.8544, 0.7847, 1.2363, 0.6939, 0.673], q:[0.3923, 0.4621], qb:[0.8649, 0.7532], phi:[0.3819]] | t^2.02 + t^2.08 + t^2.23 + t^2.35 + t^2.56 + t^3.44 + t^3.5 + 2*t^3.71 + t^4.04 + t^4.1 + t^4.16 + t^4.25 + t^4.31 + t^4.37 + t^4.44 + t^4.46 + 2*t^4.58 + t^4.65 + t^4.71 + t^4.79 + t^4.85 + t^4.92 + t^5.13 + t^5.46 + 2*t^5.52 + t^5.58 + t^5.66 + 2*t^5.73 + 2*t^5.79 + t^5.85 + t^5.94 - 2*t^6. - t^4.15/y - t^4.15*y | detail |