Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47025 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ 0.6388 0.7919 0.8066 [X:[], M:[1.147, 0.7449, 0.853, 0.7844, 1.2353, 0.696], q:[0.3922, 0.4608], qb:[0.8629, 0.7548], phi:[0.3823]] [X:[], M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [2, 2], [-11, -13]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_2$, $ M_4$, $ M_3$, $ M_1$, $ \phi_1q_1^2$, $ M_5$, $ \phi_1q_1q_2$, $ q_2\tilde{q}_1$, $ M_6^2$, $ M_2M_6$, $ M_4M_6$, $ M_2^2$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_6$, $ M_4^2$, $ M_2M_3$, $ \phi_1q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_1$, $ M_3^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ M_6\phi_1q_1^2$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_4$, $ M_5M_6$, $ M_6\phi_1q_1q_2$, $ M_4\phi_1q_1^2$, $ M_2M_5$ . -2 t^2.09 + t^2.23 + t^2.35 + t^2.56 + t^3.44 + t^3.5 + 2*t^3.71 + t^3.97 + t^4.18 + t^4.32 + t^4.44 + t^4.47 + t^4.59 + t^4.65 + t^4.71 + t^4.79 + t^4.85 + t^4.91 + t^5.12 + t^5.53 + t^5.59 + t^5.68 + 2*t^5.79 + t^5.85 + t^5.94 - 2*t^6. + 3*t^6.06 + t^6.26 + t^6.27 + t^6.32 + t^6.41 + 2*t^6.53 + t^6.56 + t^6.68 + t^6.7 + t^6.74 + t^6.79 + t^6.82 + t^6.88 + 2*t^6.94 + 2*t^7. + t^7.03 + t^7.06 + 2*t^7.21 + t^7.27 - t^7.35 + t^7.41 + t^7.47 + 3*t^7.68 + t^7.76 + 2*t^7.88 + t^7.91 + 2*t^7.94 + t^8.03 - 2*t^8.09 + 3*t^8.15 + t^8.18 + t^8.21 - 2*t^8.23 + t^8.29 - t^8.35 + 3*t^8.41 - 2*t^8.56 + 2*t^8.62 + t^8.65 + t^8.68 + t^8.79 + 2*t^8.82 + 2*t^8.88 + t^8.91 + t^8.94 + t^8.97 - t^4.15/y - t^6.24/y - t^6.38/y - t^6.5/y + t^7.32/y + t^7.44/y + t^7.59/y + t^7.65/y + (2*t^7.79)/y + (2*t^7.91)/y + t^8.06/y - t^8.32/y - t^8.47/y + t^8.53/y - t^8.62/y + t^8.68/y + (3*t^8.79)/y + (2*t^8.94)/y - t^4.15*y - t^6.24*y - t^6.38*y - t^6.5*y + t^7.32*y + t^7.44*y + t^7.59*y + t^7.65*y + 2*t^7.79*y + 2*t^7.91*y + t^8.06*y - t^8.32*y - t^8.47*y + t^8.53*y - t^8.62*y + t^8.68*y + 3*t^8.79*y + 2*t^8.94*y t^2.09/(g1^11*g2^13) + g1^2*g2^4*t^2.23 + t^2.35/(g1^6*g2^8) + g1^3*g2^3*t^2.56 + t^3.44/(g1^3*g2^3) + t^3.5/(g1^7*g2^9) + 2*g1^2*g2^2*t^3.71 + g1^7*g2^7*t^3.97 + t^4.18/(g1^22*g2^26) + t^4.32/(g1^9*g2^9) + t^4.44/(g1^17*g2^21) + g1^4*g2^8*t^4.47 + t^4.59/(g1^4*g2^4) + t^4.65/(g1^8*g2^10) + t^4.71/(g1^12*g2^16) + g1^5*g2^7*t^4.79 + g1*g2*t^4.85 + t^4.91/(g1^3*g2^5) + g1^6*g2^6*t^5.12 + t^5.53/(g1^14*g2^16) + t^5.59/(g1^18*g2^22) + (g2*t^5.68)/g1 + (2*t^5.79)/(g1^9*g2^11) + t^5.85/(g1^13*g2^17) + g1^4*g2^6*t^5.94 - 2*t^6. + (3*t^6.06)/(g1^4*g2^6) + t^6.26/(g1^33*g2^39) + g1^5*g2^5*t^6.27 + (g1*t^6.32)/g2 + t^6.41/(g1^20*g2^22) + t^6.53/(g1^28*g2^34) + g1^10*g2^10*t^6.53 + t^6.56/(g1^7*g2^5) + t^6.68/(g1^15*g2^17) + g1^6*g2^12*t^6.7 + t^6.74/(g1^19*g2^23) + t^6.79/(g1^23*g2^29) + t^6.82/g1^2 + t^6.88/(g1^6*g2^6) + (2*t^6.94)/(g1^10*g2^12) + (2*t^7.)/(g1^14*g2^18) + g1^7*g2^11*t^7.03 + t^7.06/(g1^18*g2^24) + (2*t^7.21)/(g1^5*g2^7) + t^7.27/(g1^9*g2^13) - g1^8*g2^10*t^7.35 + g1^4*g2^4*t^7.41 + t^7.47/g2^2 + t^7.62/(g1^25*g2^29) - g1^13*g2^15*t^7.62 + t^7.68/(g1^29*g2^35) + 2*g1^9*g2^9*t^7.68 + t^7.76/(g1^12*g2^12) + (2*t^7.88)/(g1^20*g2^24) + g1*g2^5*t^7.91 + t^7.94/(g1^24*g2^30) + g1^14*g2^14*t^7.94 + t^8.03/(g1^7*g2^7) - (2*t^8.09)/(g1^11*g2^13) + (3*t^8.15)/(g1^15*g2^19) + g1^6*g2^10*t^8.18 + t^8.21/(g1^19*g2^25) - 2*g1^2*g2^4*t^8.23 + t^8.29/(g1^2*g2^2) + t^8.35/(g1^44*g2^52) - (2*t^8.35)/(g1^6*g2^8) + (3*t^8.41)/(g1^10*g2^14) + t^8.5/(g1^31*g2^35) - g1^7*g2^9*t^8.5 - 2*g1^3*g2^3*t^8.56 + t^8.62/(g1^39*g2^47) + t^8.62/(g1*g2^3) + t^8.65/(g1^18*g2^18) + t^8.68/(g1^5*g2^9) + t^8.76/(g1^26*g2^30) - g1^12*g2^14*t^8.76 + t^8.79/(g1^5*g2) + t^8.82/(g1^30*g2^36) + g1^8*g2^8*t^8.82 + t^8.88/(g1^34*g2^42) + g1^4*g2^2*t^8.88 + t^8.91/(g1^13*g2^13) + g1^8*g2^16*t^8.94 + t^8.97/(g1^17*g2^19) - t^4.15/(g1*g2*y) - t^6.24/(g1^12*g2^14*y) - (g1*g2^3*t^6.38)/y - t^6.5/(g1^7*g2^9*y) + t^7.32/(g1^9*g2^9*y) + t^7.44/(g1^17*g2^21*y) + t^7.59/(g1^4*g2^4*y) + t^7.65/(g1^8*g2^10*y) + (2*g1^5*g2^7*t^7.79)/y + (2*t^7.91)/(g1^3*g2^5*y) + (g1^10*g2^12*t^8.06)/y - t^8.32/(g1^23*g2^27*y) - t^8.47/(g1^10*g2^10*y) + t^8.53/(g1^14*g2^16*y) - (g1^3*g2^7*t^8.62)/y + (g2*t^8.68)/(g1*y) + (3*t^8.79)/(g1^9*g2^11*y) + (2*g1^4*g2^6*t^8.94)/y - (t^4.15*y)/(g1*g2) - (t^6.24*y)/(g1^12*g2^14) - g1*g2^3*t^6.38*y - (t^6.5*y)/(g1^7*g2^9) + (t^7.32*y)/(g1^9*g2^9) + (t^7.44*y)/(g1^17*g2^21) + (t^7.59*y)/(g1^4*g2^4) + (t^7.65*y)/(g1^8*g2^10) + 2*g1^5*g2^7*t^7.79*y + (2*t^7.91*y)/(g1^3*g2^5) + g1^10*g2^12*t^8.06*y - (t^8.32*y)/(g1^23*g2^27) - (t^8.47*y)/(g1^10*g2^10) + (t^8.53*y)/(g1^14*g2^16) - g1^3*g2^7*t^8.62*y + (g2*t^8.68*y)/g1 + (3*t^8.79*y)/(g1^9*g2^11) + 2*g1^4*g2^6*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50851 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_6$ 0.6305 0.7796 0.8088 [X:[], M:[1.1928, 0.7711, 0.8072, 0.8192, 1.2048, 0.8072], q:[0.4096, 0.3976], qb:[0.8192, 0.7832], phi:[0.3976]] t^2.31 + 2*t^2.42 + t^2.46 + t^3.58 + 2*t^3.61 + 2*t^3.65 + t^4.63 + 2*t^4.74 + t^4.77 + t^4.81 + 3*t^4.84 + 2*t^4.88 + t^4.92 + t^5.89 + t^5.93 - t^6. - t^4.19/y - t^4.19*y detail
52586 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ 0.6521 0.8149 0.8003 [X:[], M:[1.1596, 0.764, 0.8404, 0.7821, 1.2269, 0.7148, 0.8404], q:[0.3911, 0.4493], qb:[0.8449, 0.7685], phi:[0.3865]] t^2.14 + t^2.29 + t^2.35 + 2*t^2.52 + t^3.51 + 2*t^3.68 + t^3.88 + t^4.29 + t^4.44 + t^4.49 + t^4.58 + t^4.64 + 2*t^4.67 + t^4.69 + 2*t^4.81 + t^4.84 + 2*t^4.87 + 3*t^5.04 + t^5.65 + t^5.83 + t^5.85 + t^5.97 - 3*t^6. - t^4.16/y - t^4.16*y detail
50965 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_4M_7$ 0.622 0.7618 0.8165 [X:[], M:[1.1452, 0.7178, 0.8548, 0.8091, 1.2365, 0.7178, 1.1909], q:[0.4046, 0.4502], qb:[0.8777, 0.7406], phi:[0.3817]] 2*t^2.15 + t^2.56 + t^3.44 + 2*t^3.57 + 2*t^3.71 + t^3.98 + 3*t^4.31 + 2*t^4.72 + t^4.85 + t^5.13 + 2*t^5.59 + 3*t^5.73 + 2*t^5.86 - 2*t^6. - t^4.15/y - t^4.15*y detail
55348 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_4\phi_1q_1^2$ 0.638 0.7896 0.8079 [X:[], M:[1.147, 0.7205, 0.853, 0.8088, 1.2353, 0.7205], q:[0.4044, 0.4486], qb:[0.8751, 0.7426], phi:[0.3823]] 2*t^2.16 + t^2.43 + t^2.56 + t^3.44 + t^3.57 + 2*t^3.71 + t^3.97 + 3*t^4.32 + 2*t^4.59 + 2*t^4.72 + 2*t^4.85 + t^4.99 + t^5.12 + 2*t^5.6 + t^5.74 + 3*t^5.87 - t^6. - t^4.15/y - t^4.15*y detail
50917 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_6^2$ 0.5847 0.7249 0.8065 [X:[], M:[1.2444, 0.7331, 0.7556, 0.926, 1.1704, 1.0], q:[0.463, 0.2926], qb:[0.8039, 0.7813], phi:[0.4148]] t^2.2 + t^2.27 + t^2.78 + t^3. + t^3.29 + 2*t^3.51 + t^3.73 + t^4.02 + t^4.4 + t^4.47 + t^4.53 + t^4.76 + t^4.98 + t^5.05 + t^5.2 + t^5.27 + 2*t^5.56 + t^5.71 + 2*t^5.78 + t^5.93 - t^6. - t^4.24/y - t^4.24*y detail
55365 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_7q_2\tilde{q}_1$ 0.6596 0.8332 0.7916 [X:[], M:[1.1456, 0.7427, 0.8544, 0.7847, 1.2363, 0.6939, 0.673], q:[0.3923, 0.4621], qb:[0.8649, 0.7532], phi:[0.3819]] t^2.02 + t^2.08 + t^2.23 + t^2.35 + t^2.56 + t^3.44 + t^3.5 + 2*t^3.71 + t^4.04 + t^4.1 + t^4.16 + t^4.25 + t^4.31 + t^4.37 + t^4.44 + t^4.46 + 2*t^4.58 + t^4.65 + t^4.71 + t^4.79 + t^4.85 + t^4.92 + t^5.13 + t^5.46 + 2*t^5.52 + t^5.58 + t^5.66 + 2*t^5.73 + 2*t^5.79 + t^5.85 + t^5.94 - 2*t^6. - t^4.15/y - t^4.15*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46470 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ 0.6183 0.7529 0.8212 [X:[], M:[1.1537, 0.745, 0.8463, 0.7932, 1.2309], q:[0.3966, 0.4497], qb:[0.8584, 0.757], phi:[0.3846]] t^2.23 + t^2.38 + t^2.54 + t^3.46 + t^3.53 + 2*t^3.69 + t^3.85 + t^3.92 + t^4.47 + t^4.61 + t^4.76 + t^4.77 + t^4.85 + t^4.92 + t^5.08 + t^5.7 + t^5.91 + t^5.93 - 2*t^6. - t^4.15/y - t^4.15*y detail