Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2900 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.6596 0.8332 0.7916 [M:[0.7847, 1.2363, 0.7427, 0.8544, 0.673, 1.1456, 0.6939], q:[0.7532, 0.4621], qb:[0.3923, 0.8649], phi:[0.3819]] [M:[[8, 0], [-2, 2], [-4, -4], [-3, 3], [7, -7], [3, -3], [13, -5]], q:[[-1, -3], [-7, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{7}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$ ${}$ -2 t^2.019 + t^2.082 + t^2.228 + t^2.354 + t^2.563 + t^3.437 + t^3.5 + 2*t^3.709 + t^4.038 + t^4.101 + t^4.164 + t^4.247 + t^4.31 + t^4.373 + t^4.436 + t^4.456 + 2*t^4.582 + t^4.645 + t^4.708 + t^4.792 + t^4.854 + t^4.917 + t^5.127 + t^5.456 + 2*t^5.518 + t^5.581 + t^5.665 + 2*t^5.728 + 2*t^5.791 + t^5.854 + t^5.937 - 2*t^6. + t^6.057 + 2*t^6.063 + t^6.12 + t^6.182 - t^6.209 + t^6.245 + t^6.266 + t^6.272 + t^6.329 + 2*t^6.392 + t^6.455 + t^6.475 + t^6.518 + t^6.538 + 2*t^6.601 + 2*t^6.664 + t^6.685 + 2*t^6.727 + t^6.79 + 2*t^6.81 + 2*t^6.873 + 3*t^6.936 + 2*t^6.999 + t^7.02 + t^7.062 + t^7.146 + 2*t^7.208 + t^7.271 - t^7.355 + t^7.474 + 2*t^7.537 + 2*t^7.6 - t^7.627 + t^7.663 + t^7.684 + 3*t^7.747 + 2*t^7.81 + 3*t^7.872 + t^7.893 + t^7.935 + t^7.956 - t^8.019 + t^8.075 + t^8.138 + 2*t^8.145 + t^8.165 + t^8.201 + t^8.208 - 3*t^8.228 + t^8.264 + t^8.285 + t^8.291 + t^8.327 + t^8.348 - 2*t^8.354 + 2*t^8.411 + 2*t^8.417 - t^8.437 + 2*t^8.474 + t^8.494 - t^8.5 + t^8.537 + t^8.557 - 3*t^8.563 + t^8.599 + 3*t^8.62 + 2*t^8.683 + t^8.703 + 3*t^8.746 + t^8.766 - 2*t^8.773 + 2*t^8.809 + 2*t^8.829 + t^8.872 + 3*t^8.892 + t^8.913 + 4*t^8.955 - t^4.146/y - t^6.164/y - t^6.227/y - t^6.374/y - t^6.5/y + t^7.101/y + t^7.247/y + t^7.31/y + t^7.373/y + t^7.436/y + (2*t^7.582)/y + t^7.645/y + (2*t^7.792)/y + (2*t^7.917)/y + t^8.064/y + t^8.127/y - t^8.183/y - t^8.246/y - t^8.309/y - t^8.393/y + t^8.518/y - t^8.602/y + t^8.665/y + (2*t^8.728)/y + (3*t^8.791)/y + (2*t^8.937)/y - t^4.146*y - t^6.164*y - t^6.227*y - t^6.374*y - t^6.5*y + t^7.101*y + t^7.247*y + t^7.31*y + t^7.373*y + t^7.436*y + 2*t^7.582*y + t^7.645*y + 2*t^7.792*y + 2*t^7.917*y + t^8.064*y + t^8.127*y - t^8.183*y - t^8.246*y - t^8.309*y - t^8.393*y + t^8.518*y - t^8.602*y + t^8.665*y + 2*t^8.728*y + 3*t^8.791*y + 2*t^8.937*y (g1^7*t^2.019)/g2^7 + (g1^13*t^2.082)/g2^5 + t^2.228/(g1^4*g2^4) + g1^8*t^2.354 + (g2^3*t^2.563)/g1^3 + (g1^3*t^3.437)/g2^3 + (g1^9*t^3.5)/g2 + (2*g2^2*t^3.709)/g1^2 + (g1^14*t^4.038)/g2^14 + (g1^20*t^4.101)/g2^12 + (g1^26*t^4.164)/g2^10 + (g1^3*t^4.247)/g2^11 + (g1^9*t^4.31)/g2^9 + (g1^15*t^4.373)/g2^7 + (g1^21*t^4.436)/g2^5 + t^4.456/(g1^8*g2^8) + (2*g1^4*t^4.582)/g2^4 + (g1^10*t^4.645)/g2^2 + g1^16*t^4.708 + t^4.792/(g1^7*g2) + (g2*t^4.854)/g1 + g1^5*g2^3*t^4.917 + (g2^6*t^5.127)/g1^6 + (g1^10*t^5.456)/g2^10 + (2*g1^16*t^5.518)/g2^8 + (g1^22*t^5.581)/g2^6 + t^5.665/(g1*g2^7) + (2*g1^5*t^5.728)/g2^5 + (2*g1^11*t^5.791)/g2^3 + (g1^17*t^5.854)/g2 + t^5.937/(g1^6*g2^2) - 2*t^6. + (g1^21*t^6.057)/g2^21 + 2*g1^6*g2^2*t^6.063 + (g1^27*t^6.12)/g2^19 + (g1^33*t^6.182)/g2^17 - (g2^3*t^6.209)/g1^11 + (g1^39*t^6.245)/g2^15 + (g1^10*t^6.266)/g2^18 + (g2^5*t^6.272)/g1^5 + (g1^16*t^6.329)/g2^16 + (2*g1^22*t^6.392)/g2^14 + (g1^28*t^6.455)/g2^12 + t^6.475/(g1*g2^15) + (g1^34*t^6.518)/g2^10 + (g1^5*t^6.538)/g2^13 + (2*g1^11*t^6.601)/g2^11 + (2*g1^17*t^6.664)/g2^9 + t^6.685/(g1^12*g2^12) + (2*g1^23*t^6.727)/g2^7 + (g1^29*t^6.79)/g2^5 + (2*t^6.81)/g2^8 + (2*g1^6*t^6.873)/g2^6 + (3*g1^12*t^6.936)/g2^4 + (2*g1^18*t^6.999)/g2^2 + t^7.02/(g1^11*g2^5) + g1^24*t^7.062 + (g1*t^7.146)/g2 + 2*g1^7*g2*t^7.208 + g1^13*g2^3*t^7.271 - (g2^2*t^7.355)/g1^10 + (g1^17*t^7.474)/g2^17 + (2*g1^23*t^7.537)/g2^15 + (2*g1^29*t^7.6)/g2^13 - (g2^7*t^7.627)/g1^15 + (g1^35*t^7.663)/g2^11 + (g1^6*t^7.684)/g2^14 + (3*g1^12*t^7.747)/g2^12 + (2*g1^18*t^7.81)/g2^10 + (3*g1^24*t^7.872)/g2^8 + t^7.893/(g1^5*g2^11) + (g1^30*t^7.935)/g2^6 + (g1*t^7.956)/g2^9 - (g1^7*t^8.019)/g2^7 + (g1^28*t^8.075)/g2^28 + (g1^34*t^8.138)/g2^26 + (2*g1^19*t^8.145)/g2^3 + t^8.165/(g1^10*g2^6) + (g1^40*t^8.201)/g2^24 + (g1^25*t^8.208)/g2 - (3*t^8.228)/(g1^4*g2^4) + (g1^46*t^8.264)/g2^22 + (g1^17*t^8.285)/g2^25 + (g1^2*t^8.291)/g2^2 + (g1^52*t^8.327)/g2^20 + (g1^23*t^8.348)/g2^23 - 2*g1^8*t^8.354 + (2*g1^29*t^8.411)/g2^21 + 2*g1^14*g2^2*t^8.417 - t^8.437/(g1^15*g2) + (2*g1^35*t^8.474)/g2^19 + (g1^6*t^8.494)/g2^22 - (g2*t^8.5)/g1^9 + (g1^41*t^8.537)/g2^17 + (g1^12*t^8.557)/g2^20 - (3*g2^3*t^8.563)/g1^3 + (g1^47*t^8.599)/g2^15 + (3*g1^18*t^8.62)/g2^18 + (2*g1^24*t^8.683)/g2^16 + t^8.703/(g1^5*g2^19) + (3*g1^30*t^8.746)/g2^14 + (g1*t^8.766)/g2^17 - (2*g2^6*t^8.773)/g1^14 + (2*g1^36*t^8.809)/g2^12 + (2*g1^7*t^8.829)/g2^15 + (g1^42*t^8.872)/g2^10 + (3*g1^13*t^8.892)/g2^13 + t^8.913/(g1^16*g2^16) + (4*g1^19*t^8.955)/g2^11 - (g1*t^4.146)/(g2*y) - (g1^8*t^6.164)/(g2^8*y) - (g1^14*t^6.227)/(g2^6*y) - t^6.374/(g1^3*g2^5*y) - (g1^9*t^6.5)/(g2*y) + (g1^20*t^7.101)/(g2^12*y) + (g1^3*t^7.247)/(g2^11*y) + (g1^9*t^7.31)/(g2^9*y) + (g1^15*t^7.373)/(g2^7*y) + (g1^21*t^7.436)/(g2^5*y) + (2*g1^4*t^7.582)/(g2^4*y) + (g1^10*t^7.645)/(g2^2*y) + (2*t^7.792)/(g1^7*g2*y) + (2*g1^5*g2^3*t^7.917)/y + (g2^4*t^8.064)/(g1^12*y) + (g2^6*t^8.127)/(g1^6*y) - (g1^15*t^8.183)/(g2^15*y) - (g1^21*t^8.246)/(g2^13*y) - (g1^27*t^8.309)/(g2^11*y) - (g1^4*t^8.393)/(g2^12*y) + (g1^16*t^8.518)/(g2^8*y) - t^8.602/(g1^7*g2^9*y) + t^8.665/(g1*g2^7*y) + (2*g1^5*t^8.728)/(g2^5*y) + (3*g1^11*t^8.791)/(g2^3*y) + (2*t^8.937)/(g1^6*g2^2*y) - (g1*t^4.146*y)/g2 - (g1^8*t^6.164*y)/g2^8 - (g1^14*t^6.227*y)/g2^6 - (t^6.374*y)/(g1^3*g2^5) - (g1^9*t^6.5*y)/g2 + (g1^20*t^7.101*y)/g2^12 + (g1^3*t^7.247*y)/g2^11 + (g1^9*t^7.31*y)/g2^9 + (g1^15*t^7.373*y)/g2^7 + (g1^21*t^7.436*y)/g2^5 + (2*g1^4*t^7.582*y)/g2^4 + (g1^10*t^7.645*y)/g2^2 + (2*t^7.792*y)/(g1^7*g2) + 2*g1^5*g2^3*t^7.917*y + (g2^4*t^8.064*y)/g1^12 + (g2^6*t^8.127*y)/g1^6 - (g1^15*t^8.183*y)/g2^15 - (g1^21*t^8.246*y)/g2^13 - (g1^27*t^8.309*y)/g2^11 - (g1^4*t^8.393*y)/g2^12 + (g1^16*t^8.518*y)/g2^8 - (t^8.602*y)/(g1^7*g2^9) + (t^8.665*y)/(g1*g2^7) + (2*g1^5*t^8.728*y)/g2^5 + (3*g1^11*t^8.791*y)/g2^3 + (2*t^8.937*y)/(g1^6*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3481 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{8}$ 0.6429 0.8033 0.8003 [M:[0.8093, 1.2371, 0.7166, 0.8556, 0.6702, 1.1444, 0.7166, 1.1907], q:[0.7397, 0.451], qb:[0.4046, 0.8788], phi:[0.3815]] t^2.011 + 2*t^2.15 + t^2.567 + t^3.433 + 2*t^3.572 + 2*t^3.711 + t^4.021 + 2*t^4.16 + 3*t^4.299 + t^4.578 + 2*t^4.717 + t^4.856 + t^5.134 + t^5.444 + 4*t^5.583 + 5*t^5.722 + 2*t^5.861 - 2*t^6. - t^4.144/y - t^4.144*y detail
3478 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{7}$ 0.5757 0.7182 0.8016 [M:[0.8809, 1.1468, 0.8254, 0.7202, 0.9861, 1.2798, 1.0139], q:[0.8393, 0.2798], qb:[0.4405, 0.7341], phi:[0.4266]] t^2.161 + t^2.476 + t^2.643 + t^2.958 + t^3.042 + 2*t^3.44 + t^3.839 + t^3.923 + t^4.321 + t^4.637 + t^4.72 + t^4.803 + t^4.953 + 2*t^5.119 + t^5.202 + t^5.286 + t^5.435 + 2*t^5.601 + t^5.684 + 2*t^5.917 - t^6. - t^4.28/y - t^4.28*y detail
3482 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{6}M_{8}$ 0.6727 0.8545 0.7872 [M:[0.7831, 1.2306, 0.7556, 0.8459, 0.6928, 1.1541, 0.7066, 0.8459], q:[0.7625, 0.4544], qb:[0.3916, 0.8528], phi:[0.3847]] t^2.079 + t^2.12 + t^2.267 + t^2.349 + 2*t^2.538 + t^3.503 + 2*t^3.692 + t^4.157 + t^4.198 + t^4.24 + t^4.345 + t^4.387 + t^4.428 + t^4.469 + t^4.534 + 3*t^4.616 + 2*t^4.658 + t^4.699 + 2*t^4.805 + t^4.846 + 2*t^4.887 + 3*t^5.076 + t^5.582 + t^5.623 + 2*t^5.77 + t^5.812 + t^5.853 + t^5.959 - 3*t^6. - t^4.154/y - t^4.154*y detail
3480 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{7}^{2}$ 0.595 0.7426 0.8012 [M:[0.9523, 1.1809, 0.6859, 0.7714, 0.8668, 1.2286, 1.0], q:[0.7525, 0.2952], qb:[0.4761, 0.8379], phi:[0.4095]] t^2.058 + t^2.314 + t^2.6 + t^2.857 + t^3. + 2*t^3.543 + t^3.686 + t^4.085 + t^4.116 + t^4.372 + t^4.628 + t^4.658 + t^4.771 + 2*t^4.915 + t^5.058 + t^5.171 + t^5.201 + t^5.314 + 2*t^5.6 + t^5.714 + t^5.744 + 2*t^5.857 - t^6. - t^4.229/y - t^4.229*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1883 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ 0.639 0.7933 0.8056 [M:[0.7924, 1.2338, 0.7399, 0.8507, 0.6817, 1.1493], q:[0.7531, 0.4545], qb:[0.3962, 0.8638], phi:[0.3831]] t^2.045 + t^2.22 + t^2.377 + t^2.552 + t^3.448 + t^3.527 + 2*t^3.701 + t^3.876 + t^4.09 + t^4.265 + t^4.422 + t^4.44 + 2*t^4.597 + t^4.755 + t^4.772 + t^4.851 + t^4.929 + t^5.104 + t^5.493 + t^5.572 + t^5.668 + 2*t^5.746 + t^5.904 + 2*t^5.921 - 2*t^6. - t^4.149/y - t^4.149*y detail