Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56776 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ + ${ }M_{3}M_{6}$ 0.7438 0.9357 0.7949 [M:[0.7888, 0.8592, 1.0704, 1.0, 0.9296, 0.9296, 0.676], q:[0.6408, 0.5704], qb:[0.5, 0.4296], phi:[0.4648]] [M:[[6], [4], [-2], [0], [2], [2], [-5]], q:[[-4], [-2]], qb:[[0], [2]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$ ${}M_{3}\phi_{1}^{2}$ 0 t^2.028 + t^2.366 + t^2.578 + 3*t^2.789 + t^3. + t^3.211 + t^4.056 + t^4.183 + 3*t^4.394 + 3*t^4.606 + t^4.733 + 5*t^4.817 + t^4.944 + 2*t^5.028 + 4*t^5.155 + 2*t^5.239 + 3*t^5.366 + 6*t^5.578 + t^5.789 + t^6.084 - t^6.211 + t^6.422 + t^6.55 + 2*t^6.634 + 3*t^6.761 + 5*t^6.845 + 6*t^6.972 + 2*t^7.056 + t^7.099 + 10*t^7.183 + 2*t^7.267 + t^7.31 + 9*t^7.394 + 4*t^7.522 + 10*t^7.606 + 4*t^7.733 + 2*t^7.817 + 8*t^7.944 + t^8.112 + 4*t^8.155 - 2*t^8.239 + 5*t^8.366 - 3*t^8.578 + 2*t^8.662 - 4*t^8.789 + 5*t^8.873 + t^8.916 - t^4.394/y - t^6.422/y - t^6.761/y - t^6.972/y - (2*t^7.183)/y + t^7.394/y + (3*t^7.606)/y + (4*t^7.817)/y + t^7.944/y + (2*t^8.028)/y + (3*t^8.155)/y + t^8.239/y + (5*t^8.366)/y - t^8.45/y + (5*t^8.578)/y + (3*t^8.789)/y - t^4.394*y - t^6.422*y - t^6.761*y - t^6.972*y - 2*t^7.183*y + t^7.394*y + 3*t^7.606*y + 4*t^7.817*y + t^7.944*y + 2*t^8.028*y + 3*t^8.155*y + t^8.239*y + 5*t^8.366*y - t^8.45*y + 5*t^8.578*y + 3*t^8.789*y t^2.028/g1^5 + g1^6*t^2.366 + g1^4*t^2.578 + 3*g1^2*t^2.789 + t^3. + t^3.211/g1^2 + t^4.056/g1^10 + g1^3*t^4.183 + 3*g1*t^4.394 + (3*t^4.606)/g1 + g1^12*t^4.733 + (5*t^4.817)/g1^3 + g1^10*t^4.944 + (2*t^5.028)/g1^5 + 4*g1^8*t^5.155 + (2*t^5.239)/g1^7 + 3*g1^6*t^5.366 + 6*g1^4*t^5.578 + g1^2*t^5.789 + t^6.084/g1^15 - t^6.211/g1^2 + t^6.422/g1^4 + g1^9*t^6.55 + (2*t^6.634)/g1^6 + 3*g1^7*t^6.761 + (5*t^6.845)/g1^8 + 6*g1^5*t^6.972 + (2*t^7.056)/g1^10 + g1^18*t^7.099 + 10*g1^3*t^7.183 + (2*t^7.267)/g1^12 + g1^16*t^7.31 + 9*g1*t^7.394 + 4*g1^14*t^7.522 + (10*t^7.606)/g1 + 4*g1^12*t^7.733 + (2*t^7.817)/g1^3 + 8*g1^10*t^7.944 + t^8.112/g1^20 + 4*g1^8*t^8.155 - (2*t^8.239)/g1^7 + 5*g1^6*t^8.366 - 3*g1^4*t^8.578 + (2*t^8.662)/g1^11 - 4*g1^2*t^8.789 + (5*t^8.873)/g1^13 + g1^15*t^8.916 - (g1*t^4.394)/y - t^6.422/(g1^4*y) - (g1^7*t^6.761)/y - (g1^5*t^6.972)/y - (2*g1^3*t^7.183)/y + (g1*t^7.394)/y + (3*t^7.606)/(g1*y) + (4*t^7.817)/(g1^3*y) + (g1^10*t^7.944)/y + (2*t^8.028)/(g1^5*y) + (3*g1^8*t^8.155)/y + t^8.239/(g1^7*y) + (5*g1^6*t^8.366)/y - t^8.45/(g1^9*y) + (5*g1^4*t^8.578)/y + (3*g1^2*t^8.789)/y - g1*t^4.394*y - (t^6.422*y)/g1^4 - g1^7*t^6.761*y - g1^5*t^6.972*y - 2*g1^3*t^7.183*y + g1*t^7.394*y + (3*t^7.606*y)/g1 + (4*t^7.817*y)/g1^3 + g1^10*t^7.944*y + (2*t^8.028*y)/g1^5 + 3*g1^8*t^8.155*y + (t^8.239*y)/g1^7 + 5*g1^6*t^8.366*y - (t^8.45*y)/g1^9 + 5*g1^4*t^8.578*y + 3*g1^2*t^8.789*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55113 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ 0.7543 0.9473 0.7962 [M:[0.8235, 0.8235, 1.0, 1.0, 1.0, 0.8235, 0.7207], q:[0.5883, 0.5883], qb:[0.5883, 0.4117], phi:[0.4559]] t^2.162 + 3*t^2.47 + t^2.735 + 3*t^3. + t^4.324 + 3*t^4.368 + 3*t^4.632 + 7*t^4.897 + 6*t^4.941 + 3*t^5.162 + 3*t^5.206 + 7*t^5.47 + 3*t^5.735 - 4*t^6. - t^4.368/y - t^4.368*y detail