Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56777 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4^2$ + $ M_3M_8$ 0.7556 0.9503 0.7951 [X:[], M:[0.7959, 0.8235, 1.0276, 1.0, 0.9724, 0.851, 0.7207, 0.9724], q:[0.6159, 0.5883], qb:[0.5607, 0.4117], phi:[0.4559]] [X:[], M:[[1, 6], [0, 4], [-1, -2], [0, 0], [1, 2], [-1, 2], [0, -5], [1, 2]], q:[[-1, -4], [0, -2]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_1$, $ M_2$, $ M_6$, $ \phi_1^2$, $ M_5$, $ M_8$, $ M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_7$, $ M_2M_7$, $ M_6M_7$, $ \phi_1\tilde{q}_1^2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_2$, $ M_7\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2^2$, $ M_1M_6$, $ \phi_1q_1q_2$, $ M_2M_6$, $ \phi_1q_1^2$, $ M_5M_7$, $ M_7M_8$, $ M_6^2$, $ M_1\phi_1^2$, $ M_4M_7$, $ M_2\phi_1^2$, $ M_6\phi_1^2$, $ M_1M_5$, $ M_1M_8$, $ M_1M_4$, $ M_2M_5$, $ M_2M_8$, $ M_2M_4$, $ M_5M_6$, $ M_6M_8$, $ \phi_1^4$, $ M_5\phi_1^2$, $ M_8\phi_1^2$, $ M_4\phi_1^2$, $ M_5^2$, $ M_5M_8$, $ M_8^2$ . -3 t^2.16 + t^2.39 + t^2.47 + t^2.55 + t^2.74 + 2*t^2.92 + t^3. + t^4.28 + t^4.32 + t^4.37 + t^4.45 + t^4.55 + t^4.63 + t^4.72 + t^4.73 + t^4.78 + t^4.81 + t^4.86 + 3*t^4.9 + 2*t^4.94 + t^4.98 + t^5.02 + t^5.06 + 2*t^5.08 + t^5.11 + t^5.12 + t^5.16 + t^5.21 + t^5.29 + 2*t^5.3 + 2*t^5.39 + 3*t^5.47 + 2*t^5.65 + t^5.74 + 2*t^5.83 - 3*t^6. - 2*t^6.08 - t^6.17 + t^6.49 - t^6.53 + t^6.67 + t^6.71 + t^6.76 + t^6.79 + 2*t^6.84 + t^6.88 + t^6.89 + t^6.92 + t^6.94 + t^6.98 + t^7. + 2*t^7.02 + 3*t^7.06 + 2*t^7.1 + t^7.12 + t^7.14 + t^7.16 + 2*t^7.19 + 3*t^7.2 + t^7.22 + 2*t^7.24 + t^7.25 + t^7.27 + 5*t^7.28 + t^7.32 + 2*t^7.33 + 4*t^7.37 + 2*t^7.41 + 3*t^7.45 + 3*t^7.47 + 2*t^7.49 + t^7.51 + t^7.53 + 2*t^7.55 + t^7.58 + t^7.59 + t^7.62 + 4*t^7.63 + 2*t^7.65 + t^7.66 + 2*t^7.68 + 2*t^7.69 + 2*t^7.73 + t^7.76 + 2*t^7.78 + t^7.8 + 4*t^7.81 + t^7.84 + 4*t^7.86 + t^7.9 + 2*t^7.94 + t^8. + 2*t^8.02 + 2*t^8.04 - t^8.08 + 2*t^8.12 - 5*t^8.16 + 3*t^8.21 + 2*t^8.22 - 3*t^8.24 + t^8.3 - 2*t^8.33 - t^8.34 - t^8.39 - t^8.43 - 5*t^8.47 - t^8.51 - 6*t^8.55 + 2*t^8.57 - 2*t^8.64 + t^8.65 - t^8.69 - t^8.72 - 3*t^8.74 + 2*t^8.75 - 2*t^8.82 - t^8.83 + t^8.87 - t^8.9 - 8*t^8.92 + t^8.96 - t^4.37/y - t^6.53/y - t^6.76/y - t^6.84/y - t^6.92/y - t^7.1/y - t^7.28/y + t^7.45/y + t^7.55/y + (2*t^7.63)/y + t^7.72/y + t^7.81/y + t^7.86/y + (2*t^7.9)/y + t^7.94/y + t^7.98/y + t^8.02/y + (2*t^8.08)/y + t^8.12/y + t^8.16/y + (2*t^8.21)/y + t^8.29/y + (2*t^8.3)/y + (3*t^8.39)/y + (3*t^8.47)/y + t^8.55/y + (2*t^8.65)/y - t^8.69/y + t^8.74/y + t^8.83/y + t^8.92/y - t^4.37*y - t^6.53*y - t^6.76*y - t^6.84*y - t^6.92*y - t^7.1*y - t^7.28*y + t^7.45*y + t^7.55*y + 2*t^7.63*y + t^7.72*y + t^7.81*y + t^7.86*y + 2*t^7.9*y + t^7.94*y + t^7.98*y + t^8.02*y + 2*t^8.08*y + t^8.12*y + t^8.16*y + 2*t^8.21*y + t^8.29*y + 2*t^8.3*y + 3*t^8.39*y + 3*t^8.47*y + t^8.55*y + 2*t^8.65*y - t^8.69*y + t^8.74*y + t^8.83*y + t^8.92*y t^2.16/g2^5 + g1*g2^6*t^2.39 + g2^4*t^2.47 + (g2^2*t^2.55)/g1 + g2^2*t^2.74 + 2*g1*g2^2*t^2.92 + t^3. + g1*g2^3*t^4.28 + t^4.32/g2^10 + g2*t^4.37 + t^4.45/(g1*g2) + g1*g2*t^4.55 + t^4.63/g2 + t^4.72/(g1*g2^3) + g1^2*g2*t^4.73 + g1^2*g2^12*t^4.78 + (g1*t^4.81)/g2 + g1*g2^10*t^4.86 + (3*t^4.9)/g2^3 + 2*g2^8*t^4.94 + t^4.98/(g1*g2^5) + (g2^6*t^5.02)/g1 + t^5.06/(g1^2*g2^7) + (2*g1*t^5.08)/g2^3 + (g2^4*t^5.11)/g1^2 + g1*g2^8*t^5.12 + t^5.16/g2^5 + g2^6*t^5.21 + (g2^4*t^5.29)/g1 + 2*g1^2*g2^8*t^5.3 + 2*g1*g2^6*t^5.39 + 3*g2^4*t^5.47 + 2*g1*g2^4*t^5.65 + g2^2*t^5.74 + 2*g1^2*g2^4*t^5.83 - 3*t^6. - (2*t^6.08)/(g1*g2^2) - t^6.17/(g1^2*g2^4) + t^6.49/g2^15 - t^6.53/g2^4 + g1^2*g2^9*t^6.67 + (g1*t^6.71)/g2^4 + g1*g2^7*t^6.76 + t^6.79/g2^6 + 2*g2^5*t^6.84 + t^6.88/(g1*g2^8) + (g1^2*t^6.89)/g2^4 + (g2^3*t^6.92)/g1 + g1^2*g2^7*t^6.94 + (g1*t^6.98)/g2^6 + (g2*t^7.)/g1^2 + 2*g1*g2^5*t^7.02 + (3*t^7.06)/g2^8 + 2*g2^3*t^7.1 + g1^3*g2^7*t^7.12 + t^7.14/(g1*g2^10) + g1^3*g2^18*t^7.16 + (2*g2*t^7.19)/g1 + 3*g1^2*g2^5*t^7.2 + t^7.22/(g1^2*g2^12) + (2*g1*t^7.24)/g2^8 + g1^2*g2^16*t^7.25 + t^7.27/(g1^2*g2) + 5*g1*g2^3*t^7.28 + t^7.32/g2^10 + 2*g1*g2^14*t^7.33 + 4*g2*t^7.37 + 2*g2^12*t^7.41 + (3*t^7.45)/(g1*g2) + 3*g1^2*g2^3*t^7.47 + (2*g2^10*t^7.49)/g1 + g1^2*g2^14*t^7.51 + t^7.53/(g1^2*g2^3) + 2*g1*g2*t^7.55 + (g2^8*t^7.58)/g1^2 + g1*g2^12*t^7.59 + t^7.62/(g1^3*g2^5) + (4*t^7.63)/g2 + 2*g1^3*g2^3*t^7.65 + (g2^6*t^7.66)/g1^3 + 2*g2^10*t^7.68 + 2*g1^3*g2^14*t^7.69 + 2*g1^2*g2*t^7.73 + (g2^8*t^7.76)/g1 + 2*g1^2*g2^12*t^7.78 + t^7.8/(g1^2*g2^5) + (4*g1*t^7.81)/g2 + (g2^6*t^7.84)/g1^2 + 4*g1*g2^10*t^7.86 + t^7.9/g2^3 + 2*g2^8*t^7.94 + (g1^2*t^8.)/g2 + (2*g2^6*t^8.02)/g1 + 2*g1^2*g2^10*t^8.04 - (g1*t^8.08)/g2^3 + 2*g1*g2^8*t^8.12 - (5*t^8.16)/g2^5 + 3*g2^6*t^8.21 + 2*g1^3*g2^10*t^8.22 - (3*t^8.24)/(g1*g2^7) + g1^2*g2^8*t^8.3 - (2*t^8.33)/(g1^2*g2^9) - (g1*t^8.34)/g2^5 - g1*g2^6*t^8.39 - t^8.43/g2^7 - 5*g2^4*t^8.47 - t^8.51/(g1*g2^9) - (6*g2^2*t^8.55)/g1 + 2*g1^2*g2^6*t^8.57 - (2*t^8.64)/g1^2 + t^8.65/g2^20 - t^8.69/g2^9 - t^8.72/(g1^3*g2^2) - 3*g2^2*t^8.74 + 2*g1^3*g2^6*t^8.75 - (2*t^8.82)/g1 - g1^2*g2^4*t^8.83 + (g1*t^8.87)/g2^9 - t^8.9/(g1^2*g2^2) - 8*g1*g2^2*t^8.92 + t^8.96/g2^11 - (g2*t^4.37)/y - t^6.53/(g2^4*y) - (g1*g2^7*t^6.76)/y - (g2^5*t^6.84)/y - (g2^3*t^6.92)/(g1*y) - (g2^3*t^7.1)/y - (g1*g2^3*t^7.28)/y + t^7.45/(g1*g2*y) + (g1*g2*t^7.55)/y + (2*t^7.63)/(g2*y) + t^7.72/(g1*g2^3*y) + (g1*t^7.81)/(g2*y) + (g1*g2^10*t^7.86)/y + (2*t^7.9)/(g2^3*y) + (g2^8*t^7.94)/y + t^7.98/(g1*g2^5*y) + (g2^6*t^8.02)/(g1*y) + (2*g1*t^8.08)/(g2^3*y) + (g1*g2^8*t^8.12)/y + t^8.16/(g2^5*y) + (2*g2^6*t^8.21)/y + (g2^4*t^8.29)/(g1*y) + (2*g1^2*g2^8*t^8.3)/y + (3*g1*g2^6*t^8.39)/y + (3*g2^4*t^8.47)/y + (g2^2*t^8.55)/(g1*y) + (2*g1*g2^4*t^8.65)/y - t^8.69/(g2^9*y) + (g2^2*t^8.74)/y + (g1^2*g2^4*t^8.83)/y + (g1*g2^2*t^8.92)/y - g2*t^4.37*y - (t^6.53*y)/g2^4 - g1*g2^7*t^6.76*y - g2^5*t^6.84*y - (g2^3*t^6.92*y)/g1 - g2^3*t^7.1*y - g1*g2^3*t^7.28*y + (t^7.45*y)/(g1*g2) + g1*g2*t^7.55*y + (2*t^7.63*y)/g2 + (t^7.72*y)/(g1*g2^3) + (g1*t^7.81*y)/g2 + g1*g2^10*t^7.86*y + (2*t^7.9*y)/g2^3 + g2^8*t^7.94*y + (t^7.98*y)/(g1*g2^5) + (g2^6*t^8.02*y)/g1 + (2*g1*t^8.08*y)/g2^3 + g1*g2^8*t^8.12*y + (t^8.16*y)/g2^5 + 2*g2^6*t^8.21*y + (g2^4*t^8.29*y)/g1 + 2*g1^2*g2^8*t^8.3*y + 3*g1*g2^6*t^8.39*y + 3*g2^4*t^8.47*y + (g2^2*t^8.55*y)/g1 + 2*g1*g2^4*t^8.65*y - (t^8.69*y)/g2^9 + g2^2*t^8.74*y + g1^2*g2^4*t^8.83*y + g1*g2^2*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55113 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4^2$ 0.7543 0.9473 0.7962 [X:[], M:[0.8235, 0.8235, 1.0, 1.0, 1.0, 0.8235, 0.7207], q:[0.5883, 0.5883], qb:[0.5883, 0.4117], phi:[0.4559]] t^2.16 + 3*t^2.47 + t^2.74 + 3*t^3. + t^4.32 + 3*t^4.37 + 3*t^4.63 + 7*t^4.9 + 6*t^4.94 + 3*t^5.16 + 3*t^5.21 + 7*t^5.47 + 3*t^5.74 - 4*t^6. - t^4.37/y - t^4.37*y detail