Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
541 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ 0.6135 0.7921 0.7745 [X:[], M:[0.9638, 1.1086, 1.0362, 0.8914, 0.7321], q:[0.7409, 0.2953], qb:[0.4546, 0.4368], phi:[0.5181]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1^2$, $ M_5\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ $M_4\phi_1q_2^2$ -2 2*t^2.2 + t^2.25 + t^2.67 + 2*t^3.11 + t^3.33 + t^3.53 + t^3.59 + t^3.75 + t^4.18 + t^4.23 + t^4.28 + 3*t^4.39 + 2*t^4.45 + t^4.5 + 2*t^4.87 + t^4.92 + 4*t^5.3 + t^5.35 + 2*t^5.36 + t^5.52 + 2*t^5.73 + 4*t^5.78 + t^5.84 + t^5.95 - 2*t^6. - t^6.05 + t^6.21 + t^6.22 + t^6.26 + 2*t^6.37 + 2*t^6.42 + 2*t^6.43 + t^6.48 + t^6.53 + 4*t^6.59 + 3*t^6.64 + t^6.65 + 2*t^6.7 + t^6.75 + t^6.85 + t^6.86 + t^6.9 - t^6.91 + t^6.96 + 3*t^7.07 + 2*t^7.12 - t^7.13 + t^7.17 + 2*t^7.28 + t^7.39 + 6*t^7.5 + 2*t^7.54 + t^7.55 + t^7.6 + t^7.61 + t^7.71 + t^7.72 + t^7.76 - t^7.77 + t^7.81 + t^7.87 + 4*t^7.93 + 5*t^7.98 + t^8.02 + 2*t^8.03 + t^8.09 + t^8.14 - 6*t^8.2 - 5*t^8.25 - t^8.3 + t^8.35 + 3*t^8.4 + 2*t^8.41 + 5*t^8.46 + t^8.47 + 2*t^8.51 + t^8.56 + 3*t^8.57 + 2*t^8.62 + 2*t^8.63 - 2*t^8.67 + 6*t^8.78 + 4*t^8.84 + t^8.85 + t^8.88 + 3*t^8.89 + t^8.93 + 2*t^8.94 - t^4.55/y - t^6.75/y + t^7.39/y + (3*t^7.45)/y - t^7.66/y + (2*t^7.87)/y + t^7.92/y + (4*t^8.3)/y + (3*t^8.36)/y + (2*t^8.52)/y + t^8.58/y + (2*t^8.73)/y + (5*t^8.78)/y + t^8.84/y + t^8.95/y - t^4.55*y - t^6.75*y + t^7.39*y + 3*t^7.45*y - t^7.66*y + 2*t^7.87*y + t^7.92*y + 4*t^8.3*y + 3*t^8.36*y + 2*t^8.52*y + t^8.58*y + 2*t^8.73*y + 5*t^8.78*y + t^8.84*y + t^8.95*y (2*g2^7*t^2.2)/g1^5 + (g1^7*t^2.25)/g2^5 + g1^12*g2^12*t^2.67 + (2*t^3.11)/(g1^4*g2^4) + t^3.33/(g1^12*g2^12) + g1*g2^13*t^3.53 + g1^13*g2*t^3.59 + (g2^5*t^3.75)/g1^7 + (g2^22*t^4.18)/g1^2 + g1^10*g2^10*t^4.23 + (g1^22*t^4.28)/g2^2 + (3*g2^14*t^4.39)/g1^10 + 2*g1^2*g2^2*t^4.45 + (g1^14*t^4.5)/g2^10 + 2*g1^7*g2^19*t^4.87 + g1^19*g2^7*t^4.92 + (4*g2^3*t^5.3)/g1^9 + g1^24*g2^24*t^5.35 + (2*g1^3*t^5.36)/g2^9 + t^5.52/(g1^17*g2^5) + (2*g2^20*t^5.73)/g1^4 + 4*g1^8*g2^8*t^5.78 + (g1^20*t^5.84)/g2^4 + (g2^12*t^5.95)/g1^12 - 2*t^6. - (g1^12*t^6.05)/g2^12 + g1^13*g2^25*t^6.21 + t^6.22/(g1^8*g2^8) + g1^25*g2^13*t^6.26 + (2*g2^29*t^6.37)/g1^7 + 2*g1^5*g2^17*t^6.42 + (2*t^6.43)/(g1^16*g2^16) + g1^17*g2^5*t^6.48 + (g1^29*t^6.53)/g2^7 + (4*g2^21*t^6.59)/g1^15 + (3*g2^9*t^6.64)/g1^3 + t^6.65/(g1^24*g2^24) + (2*g1^9*t^6.7)/g2^3 + (g1^21*t^6.75)/g2^15 + g1^10*g2^34*t^6.85 + (g2*t^6.86)/g1^11 + g1^22*g2^22*t^6.9 - (g1*t^6.91)/g2^11 + g1^34*g2^10*t^6.96 + 3*g1^2*g2^26*t^7.07 + 2*g1^14*g2^14*t^7.12 - t^7.13/(g1^7*g2^19) + g1^26*g2^2*t^7.17 + (2*g2^18*t^7.28)/g1^6 + (g1^18*t^7.39)/g2^6 + (6*g2^10*t^7.5)/g1^14 + 2*g1^19*g2^31*t^7.54 + t^7.55/(g1^2*g2^2) + g1^31*g2^19*t^7.6 + (g1^10*t^7.61)/g2^14 + (g2^35*t^7.71)/g1 + (g2^2*t^7.72)/g1^22 + g1^11*g2^23*t^7.76 - t^7.77/(g1^10*g2^10) + g1^23*g2^11*t^7.81 + (g1^35*t^7.87)/g2 + (4*g2^27*t^7.93)/g1^9 + 5*g1^3*g2^15*t^7.98 + g1^36*g2^36*t^8.02 + 2*g1^15*g2^3*t^8.03 + (g1^27*t^8.09)/g2^9 + (g2^19*t^8.14)/g1^17 - (6*g2^7*t^8.2)/g1^5 - (5*g1^7*t^8.25)/g2^5 - (g1^19*t^8.3)/g2^17 + (g2^44*t^8.35)/g1^4 + 3*g1^8*g2^32*t^8.4 + (2*t^8.41)/(g1^13*g2) + 5*g1^20*g2^20*t^8.46 + t^8.47/(g1*g2^13) + 2*g1^32*g2^8*t^8.51 + (g1^44*t^8.56)/g2^4 + (3*g2^36*t^8.57)/g1^12 + 2*g2^24*t^8.62 + (2*t^8.63)/(g1^21*g2^9) - 2*g1^12*g2^12*t^8.67 + (g1^36*t^8.78)/g2^12 + (5*g2^28*t^8.78)/g1^20 + (4*g2^16*t^8.84)/g1^8 + t^8.85/(g1^29*g2^17) + g1^25*g2^37*t^8.88 + 3*g1^4*g2^4*t^8.89 + g1^37*g2^25*t^8.93 + (2*g1^16*t^8.94)/g2^8 - t^4.55/(g1^2*g2^2*y) - (g2^5*t^6.75)/(g1^7*y) + (g2^14*t^7.39)/(g1^10*y) + (3*g1^2*g2^2*t^7.45)/y - t^7.66/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.87)/y + (g1^19*g2^7*t^7.92)/y + (4*g2^3*t^8.3)/(g1^9*y) + (3*g1^3*t^8.36)/(g2^9*y) + (2*t^8.52)/(g1^17*g2^5*y) + t^8.58/(g1^5*g2^17*y) + (2*g2^20*t^8.73)/(g1^4*y) + (5*g1^8*g2^8*t^8.78)/y + (g1^20*t^8.84)/(g2^4*y) + (g2^12*t^8.95)/(g1^12*y) - (t^4.55*y)/(g1^2*g2^2) - (g2^5*t^6.75*y)/g1^7 + (g2^14*t^7.39*y)/g1^10 + 3*g1^2*g2^2*t^7.45*y - (t^7.66*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.87*y + g1^19*g2^7*t^7.92*y + (4*g2^3*t^8.3*y)/g1^9 + (3*g1^3*t^8.36*y)/g2^9 + (2*t^8.52*y)/(g1^17*g2^5) + (t^8.58*y)/(g1^5*g2^17) + (2*g2^20*t^8.73*y)/g1^4 + 5*g1^8*g2^8*t^8.78*y + (g1^20*t^8.84*y)/g2^4 + (g2^12*t^8.95*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
846 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_4M_5$ 0.5509 0.7087 0.7773 [X:[], M:[1.0508, 0.8475, 0.9492, 1.1525, 0.8475], q:[0.7627, 0.1865], qb:[0.4915, 0.661], phi:[0.4746]] t^2.03 + 3*t^2.54 + 2*t^2.85 + t^3.46 + t^3.76 + t^3.97 + t^4.07 + t^4.27 + t^4.37 + 2*t^4.58 + 3*t^4.88 + 5*t^5.09 + 7*t^5.39 + t^5.7 + t^5.8 - t^6. - t^4.42/y - t^4.42*y detail
848 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ 0.6133 0.7914 0.7749 [X:[], M:[0.9637, 1.1089, 1.0363, 0.8911, 0.7409], q:[0.7409, 0.2954], qb:[0.4455, 0.4455], phi:[0.5182]] 3*t^2.22 + t^2.67 + 2*t^3.11 + t^3.33 + 2*t^3.56 + t^3.78 + 3*t^4.23 + 6*t^4.45 + 3*t^4.9 + 6*t^5.33 + t^5.35 + t^5.55 + 7*t^5.78 - 2*t^6. - t^4.55/y - t^4.55*y detail
847 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ 0.5979 0.7809 0.7657 [X:[], M:[0.9223, 1.2331, 1.0777, 0.7669, 0.7669], q:[0.7306, 0.3471], qb:[0.3471, 0.4197], phi:[0.5389]] t^2.08 + 3*t^2.3 + 3*t^3.23 + t^3.45 + 2*t^3.7 + 2*t^3.92 + t^4.14 + t^4.17 + 3*t^4.38 + 6*t^4.6 + 3*t^5.32 + 9*t^5.53 + 3*t^5.75 + t^6. - t^4.62/y - t^4.62*y detail
1896 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6103 0.7849 0.7775 [X:[], M:[0.9748, 1.0757, 1.0252, 0.9243, 0.7689], q:[0.7437, 0.2816], qb:[0.4369, 0.4874], phi:[0.5126]] t^2.16 + 2*t^2.31 + t^2.77 + 2*t^3.08 + t^3.23 + t^3.54 + t^3.69 + t^3.84 + t^4.16 + 2*t^4.31 + 3*t^4.46 + 3*t^4.61 + t^4.93 + 2*t^5.08 + 2*t^5.23 + 4*t^5.38 + t^5.53 + t^5.55 + t^5.7 + 3*t^5.85 - t^4.54/y - t^4.54*y detail
849 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6327 0.8272 0.7649 [X:[], M:[0.963, 1.1111, 1.037, 0.8889, 0.7407, 0.7407], q:[0.7407, 0.2963], qb:[0.4444, 0.4444], phi:[0.5185]] 4*t^2.22 + t^2.67 + 2*t^3.11 + t^3.33 + 2*t^3.56 + 3*t^4.22 + 10*t^4.44 + 4*t^4.89 + 9*t^5.33 + 2*t^5.56 + 9*t^5.78 - 5*t^6. - t^4.56/y - t^4.56*y detail {a: 205/324, c: 67/81, M1: 26/27, M2: 10/9, M3: 28/27, M4: 8/9, M5: 20/27, M6: 20/27, q1: 20/27, q2: 8/27, qb1: 4/9, qb2: 4/9, phi1: 14/27}
1894 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ 0.6305 0.8225 0.7665 [X:[], M:[0.9712, 1.0863, 1.0288, 0.9137, 0.7209, 0.7784], q:[0.7428, 0.286], qb:[0.4788, 0.4349], phi:[0.5144]] 2*t^2.16 + t^2.29 + t^2.34 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.53 + t^3.71 + t^4.15 + t^4.28 + 3*t^4.33 + t^4.42 + 2*t^4.46 + 2*t^4.5 + t^4.59 + t^4.63 + t^4.67 + 2*t^4.9 + t^5.04 + t^5.08 + 4*t^5.25 + 2*t^5.38 + 3*t^5.42 + t^5.48 + t^5.59 + 2*t^5.7 + 2*t^5.83 + 2*t^5.87 - 2*t^6. - t^4.54/y - t^4.54*y detail
1893 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.6295 0.8188 0.7688 [X:[], M:[0.9716, 1.0851, 1.0284, 0.9149, 0.7478, 0.7947], q:[0.7429, 0.2855], qb:[0.4525, 0.4624], phi:[0.5142]] t^2.21 + 2*t^2.24 + t^2.38 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.59 + t^3.79 + t^4.26 + t^4.29 + t^4.32 + t^4.43 + 2*t^4.46 + 3*t^4.49 + t^4.6 + 2*t^4.63 + t^4.77 + t^4.96 + 2*t^4.99 + t^5.13 + 2*t^5.3 + 4*t^5.33 + 2*t^5.47 + t^5.49 + t^5.5 + t^5.64 + t^5.8 + 3*t^5.83 - 2*t^6. - t^4.54/y - t^4.54*y detail
1892 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ 0.6123 0.7911 0.7741 [X:[], M:[0.9708, 1.0877, 1.0292, 0.9123, 0.7135], q:[0.7427, 0.2865], qb:[0.4854, 0.4269], phi:[0.5146]] 2*t^2.14 + t^2.32 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.51 + 2*t^3.68 + t^4.11 + 4*t^4.28 + 3*t^4.46 + t^4.63 + 2*t^4.88 + t^5.05 + 4*t^5.23 + 3*t^5.4 + t^5.47 + 2*t^5.65 + 5*t^5.82 - t^6. - t^4.54/y - t^4.54*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
343 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ 0.5939 0.7557 0.7859 [X:[], M:[0.9644, 1.1068, 1.0356, 0.8932], q:[0.7411, 0.2945], qb:[0.4466, 0.4466], phi:[0.5178]] 2*t^2.22 + t^2.68 + 2*t^3.11 + t^3.32 + 2*t^3.56 + 2*t^3.78 + 3*t^4.23 + 3*t^4.45 + 2*t^4.9 + 4*t^5.33 + t^5.36 + 5*t^5.79 - t^6. - t^4.55/y - t^4.55*y detail