Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45959 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ 0.6135 0.7921 0.7745 [M:[0.9638, 0.7321, 1.0362], q:[0.7409, 0.2953], qb:[0.4546, 0.4368], phi:[0.5181]] [M:[[4, 4], [-5, 7], [-4, -4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -2 2*t^2.196 + t^2.249 + t^2.674 + 2*t^3.109 + t^3.326 + t^3.533 + t^3.587 + t^3.751 + t^4.175 + t^4.228 + t^4.282 + 3*t^4.392 + 2*t^4.446 + t^4.499 + 2*t^4.87 + t^4.924 + 4*t^5.305 + t^5.348 + 2*t^5.358 + t^5.522 + 2*t^5.73 + 4*t^5.783 + t^5.836 + t^5.947 - 2*t^6. - t^6.053 + t^6.207 + t^6.217 + t^6.261 + 2*t^6.371 + 2*t^6.425 + 2*t^6.434 + t^6.478 + t^6.531 + 4*t^6.589 + 3*t^6.642 + t^6.652 + 2*t^6.695 + t^6.748 + t^6.849 + t^6.859 + t^6.903 - t^6.912 + t^6.956 + 3*t^7.067 + 2*t^7.12 - t^7.13 + t^7.173 + 2*t^7.284 + t^7.39 + 6*t^7.501 + 2*t^7.544 + t^7.554 + t^7.598 + t^7.608 + t^7.709 + t^7.718 + t^7.762 - t^7.772 + t^7.815 + t^7.868 + 4*t^7.926 + 5*t^7.979 + t^8.022 + 2*t^8.032 + t^8.085 + t^8.143 - 6*t^8.196 - 5*t^8.249 - t^8.303 + t^8.35 + 3*t^8.404 + 2*t^8.413 + 5*t^8.457 + t^8.467 + 2*t^8.51 + t^8.563 + 3*t^8.568 + 2*t^8.621 + 2*t^8.631 - 2*t^8.674 + t^8.781 + 5*t^8.785 + 4*t^8.838 + t^8.848 + t^8.882 + 3*t^8.891 + t^8.935 + 2*t^8.945 + t^8.998 - t^4.554/y - t^6.751/y + t^7.392/y + (3*t^7.446)/y - t^7.663/y + (2*t^7.87)/y + t^7.924/y + (4*t^8.305)/y + (3*t^8.358)/y + (2*t^8.522)/y + t^8.575/y + (2*t^8.73)/y + (5*t^8.783)/y + t^8.836/y + t^8.947/y - t^4.554*y - t^6.751*y + t^7.392*y + 3*t^7.446*y - t^7.663*y + 2*t^7.87*y + t^7.924*y + 4*t^8.305*y + 3*t^8.358*y + 2*t^8.522*y + t^8.575*y + 2*t^8.73*y + 5*t^8.783*y + t^8.836*y + t^8.947*y (2*g2^7*t^2.196)/g1^5 + (g1^7*t^2.249)/g2^5 + g1^12*g2^12*t^2.674 + (2*t^3.109)/(g1^4*g2^4) + t^3.326/(g1^12*g2^12) + g1*g2^13*t^3.533 + g1^13*g2*t^3.587 + (g2^5*t^3.751)/g1^7 + (g2^22*t^4.175)/g1^2 + g1^10*g2^10*t^4.228 + (g1^22*t^4.282)/g2^2 + (3*g2^14*t^4.392)/g1^10 + 2*g1^2*g2^2*t^4.446 + (g1^14*t^4.499)/g2^10 + 2*g1^7*g2^19*t^4.87 + g1^19*g2^7*t^4.924 + (4*g2^3*t^5.305)/g1^9 + g1^24*g2^24*t^5.348 + (2*g1^3*t^5.358)/g2^9 + t^5.522/(g1^17*g2^5) + (2*g2^20*t^5.73)/g1^4 + 4*g1^8*g2^8*t^5.783 + (g1^20*t^5.836)/g2^4 + (g2^12*t^5.947)/g1^12 - 2*t^6. - (g1^12*t^6.053)/g2^12 + g1^13*g2^25*t^6.207 + t^6.217/(g1^8*g2^8) + g1^25*g2^13*t^6.261 + (2*g2^29*t^6.371)/g1^7 + 2*g1^5*g2^17*t^6.425 + (2*t^6.434)/(g1^16*g2^16) + g1^17*g2^5*t^6.478 + (g1^29*t^6.531)/g2^7 + (4*g2^21*t^6.589)/g1^15 + (3*g2^9*t^6.642)/g1^3 + t^6.652/(g1^24*g2^24) + (2*g1^9*t^6.695)/g2^3 + (g1^21*t^6.748)/g2^15 + g1^10*g2^34*t^6.849 + (g2*t^6.859)/g1^11 + g1^22*g2^22*t^6.903 - (g1*t^6.912)/g2^11 + g1^34*g2^10*t^6.956 + 3*g1^2*g2^26*t^7.067 + 2*g1^14*g2^14*t^7.12 - t^7.13/(g1^7*g2^19) + g1^26*g2^2*t^7.173 + (2*g2^18*t^7.284)/g1^6 + (g1^18*t^7.39)/g2^6 + (6*g2^10*t^7.501)/g1^14 + 2*g1^19*g2^31*t^7.544 + t^7.554/(g1^2*g2^2) + g1^31*g2^19*t^7.598 + (g1^10*t^7.608)/g2^14 + (g2^35*t^7.709)/g1 + (g2^2*t^7.718)/g1^22 + g1^11*g2^23*t^7.762 - t^7.772/(g1^10*g2^10) + g1^23*g2^11*t^7.815 + (g1^35*t^7.868)/g2 + (4*g2^27*t^7.926)/g1^9 + 5*g1^3*g2^15*t^7.979 + g1^36*g2^36*t^8.022 + 2*g1^15*g2^3*t^8.032 + (g1^27*t^8.085)/g2^9 + (g2^19*t^8.143)/g1^17 - (6*g2^7*t^8.196)/g1^5 - (5*g1^7*t^8.249)/g2^5 - (g1^19*t^8.303)/g2^17 + (g2^44*t^8.35)/g1^4 + 3*g1^8*g2^32*t^8.404 + (2*t^8.413)/(g1^13*g2) + 5*g1^20*g2^20*t^8.457 + t^8.467/(g1*g2^13) + 2*g1^32*g2^8*t^8.51 + (g1^44*t^8.563)/g2^4 + (3*g2^36*t^8.568)/g1^12 + 2*g2^24*t^8.621 + (2*t^8.631)/(g1^21*g2^9) - 2*g1^12*g2^12*t^8.674 + (g1^36*t^8.781)/g2^12 + (5*g2^28*t^8.785)/g1^20 + (4*g2^16*t^8.838)/g1^8 + t^8.848/(g1^29*g2^17) + g1^25*g2^37*t^8.882 + 3*g1^4*g2^4*t^8.891 + g1^37*g2^25*t^8.935 + (2*g1^16*t^8.945)/g2^8 + (g1^28*t^8.998)/g2^20 - t^4.554/(g1^2*g2^2*y) - (g2^5*t^6.751)/(g1^7*y) + (g2^14*t^7.392)/(g1^10*y) + (3*g1^2*g2^2*t^7.446)/y - t^7.663/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.87)/y + (g1^19*g2^7*t^7.924)/y + (4*g2^3*t^8.305)/(g1^9*y) + (3*g1^3*t^8.358)/(g2^9*y) + (2*t^8.522)/(g1^17*g2^5*y) + t^8.575/(g1^5*g2^17*y) + (2*g2^20*t^8.73)/(g1^4*y) + (5*g1^8*g2^8*t^8.783)/y + (g1^20*t^8.836)/(g2^4*y) + (g2^12*t^8.947)/(g1^12*y) - (t^4.554*y)/(g1^2*g2^2) - (g2^5*t^6.751*y)/g1^7 + (g2^14*t^7.392*y)/g1^10 + 3*g1^2*g2^2*t^7.446*y - (t^7.663*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.87*y + g1^19*g2^7*t^7.924*y + (4*g2^3*t^8.305*y)/g1^9 + (3*g1^3*t^8.358*y)/g2^9 + (2*t^8.522*y)/(g1^17*g2^5) + (t^8.575*y)/(g1^5*g2^17) + (2*g2^20*t^8.73*y)/g1^4 + 5*g1^8*g2^8*t^8.783*y + (g1^20*t^8.836*y)/g2^4 + (g2^12*t^8.947*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46124 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ 0.6064 0.7787 0.7788 [M:[0.9857, 0.7364, 1.0143, 1.043], q:[0.7464, 0.2679], qb:[0.4885, 0.4685], phi:[0.5072]] 2*t^2.209 + t^2.269 + 2*t^3.043 + 2*t^3.129 + t^3.645 + t^3.705 + t^3.731 + t^4.333 + t^4.392 + 3*t^4.419 + t^4.452 + 2*t^4.478 + t^4.538 + 4*t^5.252 + 2*t^5.312 + 3*t^5.338 + t^5.398 + 2*t^5.854 + 2*t^5.914 + t^5.94 + t^5.974 - 3*t^6. - t^4.522/y - t^4.522*y detail
46266 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ 0.6133 0.7914 0.7749 [M:[0.9637, 0.7409, 1.0363], q:[0.7409, 0.2954], qb:[0.4455, 0.4455], phi:[0.5182]] 3*t^2.223 + t^2.673 + 2*t^3.109 + t^3.327 + 2*t^3.559 + t^3.777 + 3*t^4.228 + 6*t^4.446 + 3*t^4.896 + 6*t^5.332 + t^5.346 + t^5.55 + 7*t^5.782 - 2*t^6. - t^4.554/y - t^4.554*y detail
46125 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ + ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0.5509 0.7087 0.7773 [M:[1.0508, 0.8475, 0.9492], q:[0.7627, 0.1865], qb:[0.4915, 0.661], phi:[0.4746]] t^2.034 + 3*t^2.543 + 2*t^2.848 + t^3.457 + t^3.762 + t^3.966 + t^4.067 + t^4.271 + t^4.372 + 2*t^4.576 + 3*t^4.881 + 5*t^5.085 + 7*t^5.39 + t^5.695 + t^5.796 - t^6. - t^4.424/y - t^4.424*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45920 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6172 0.7998 0.7717 [M:[0.9566, 0.7306], q:[0.7392, 0.3042], qb:[0.4435, 0.4264], phi:[0.5217]] 2*t^2.192 + t^2.243 + t^2.61 + t^2.87 + t^3.13 + t^3.39 + t^3.497 + t^3.548 + t^3.757 + t^4.124 + t^4.175 + t^4.226 + 3*t^4.384 + 2*t^4.435 + t^4.486 + 2*t^4.802 + t^4.853 + 2*t^5.062 + t^5.113 + t^5.219 + 2*t^5.322 + t^5.373 + t^5.48 + t^5.582 + 2*t^5.689 + 4*t^5.74 + t^5.791 + t^5.949 - t^6. - t^4.565/y - t^4.565*y detail