Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1893 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ | 0.6295 | 0.8188 | 0.7688 | [X:[], M:[0.9716, 1.0851, 1.0284, 0.9149, 0.7478, 0.7947], q:[0.7429, 0.2855], qb:[0.4525, 0.4624], phi:[0.5142]] | [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_1$, $ M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6q_2\tilde{q}_1$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_4q_2\tilde{q}_1$, $ M_4M_5$, $ M_4q_2\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4^2$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_6\phi_1q_2^2$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_5q_1\tilde{q}_1$ | $M_4\phi_1q_2^2$ | -2 | t^2.21 + 2*t^2.24 + t^2.38 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.59 + t^3.79 + t^4.26 + t^4.29 + t^4.32 + t^4.43 + 2*t^4.46 + 3*t^4.49 + t^4.6 + 2*t^4.63 + t^4.77 + t^4.96 + 2*t^4.99 + t^5.13 + 2*t^5.3 + 4*t^5.33 + 2*t^5.47 + t^5.49 + t^5.5 + t^5.64 + t^5.8 + 3*t^5.83 - 2*t^6. + t^6.03 + 2*t^6.17 + t^6.33 + 2*t^6.34 + t^6.47 + t^6.5 + t^6.51 + 2*t^6.53 + 2*t^6.56 + 2*t^6.64 + 3*t^6.67 + 2*t^6.7 + 4*t^6.73 + t^6.81 + t^6.84 + 3*t^6.87 + t^6.98 + t^7. + t^7.01 + t^7.03 + t^7.06 + t^7.15 + t^7.17 + t^7.2 + 2*t^7.23 + 2*t^7.34 + 2*t^7.37 + t^7.4 + 2*t^7.51 + t^7.54 + 6*t^7.57 + 2*t^7.68 + t^7.7 + 3*t^7.71 + 2*t^7.73 + t^7.74 + t^7.84 + 2*t^7.85 + t^7.87 + t^7.88 + t^8.01 + t^8.02 + t^8.04 + 3*t^8.07 + t^8.1 - 2*t^8.21 + t^8.23 - 6*t^8.24 + t^8.27 - t^8.38 + 3*t^8.41 + t^8.52 + 2*t^8.54 + 2*t^8.55 + 4*t^8.57 + 2*t^8.58 + t^8.6 + t^8.63 + t^8.69 + 3*t^8.72 - 2*t^8.74 + t^8.75 + 2*t^8.77 + 3*t^8.8 + 2*t^8.86 + 4*t^8.89 + 3*t^8.91 + 2*t^8.94 + 5*t^8.97 - t^4.54/y - t^6.79/y - t^6.93/y + (3*t^7.46)/y + t^7.49/y + t^7.6/y + t^7.63/y + t^7.96/y + (2*t^7.99)/y + t^8.13/y + t^8.16/y + (3*t^8.3)/y + (4*t^8.33)/y + (3*t^8.47)/y + (2*t^8.5)/y + t^8.64/y + t^8.8/y + (4*t^8.83)/y + t^8.97/y - t^4.54*y - t^6.79*y - t^6.93*y + 3*t^7.46*y + t^7.49*y + t^7.6*y + t^7.63*y + t^7.96*y + 2*t^7.99*y + t^8.13*y + t^8.16*y + 3*t^8.3*y + 4*t^8.33*y + 3*t^8.47*y + 2*t^8.5*y + t^8.64*y + t^8.8*y + 4*t^8.83*y + t^8.97*y | (g1^7*t^2.21)/g2^5 + (2*g2^7*t^2.24)/g1^5 + t^2.38/(g1*g2^13) + g1^12*g2^12*t^2.74 + (2*t^3.09)/(g1^4*g2^4) + t^3.26/(g1^12*g2^12) + g1^13*g2*t^3.59 + (g2^5*t^3.79)/g1^7 + (g1^22*t^4.26)/g2^2 + g1^10*g2^10*t^4.29 + (g2^22*t^4.32)/g1^2 + (g1^14*t^4.43)/g2^10 + 2*g1^2*g2^2*t^4.46 + (3*g2^14*t^4.49)/g1^10 + (g1^6*t^4.6)/g2^18 + (2*t^4.63)/(g1^6*g2^6) + t^4.77/(g1^2*g2^26) + g1^19*g2^7*t^4.96 + 2*g1^7*g2^19*t^4.99 + (g1^11*t^5.13)/g2 + (2*g1^3*t^5.3)/g2^9 + (4*g2^3*t^5.33)/g1^9 + (2*t^5.47)/(g1^5*g2^17) + g1^24*g2^24*t^5.49 + t^5.5/(g1^17*g2^5) + t^5.64/(g1^13*g2^25) + (g1^20*t^5.8)/g2^4 + 3*g1^8*g2^8*t^5.83 - 2*t^6. + (g2^12*t^6.03)/g1^12 + (2*t^6.17)/(g1^8*g2^8) + g1^25*g2^13*t^6.33 + (2*t^6.34)/(g1^16*g2^16) + (g1^29*t^6.47)/g2^7 + g1^17*g2^5*t^6.5 + t^6.51/(g1^24*g2^24) + 2*g1^5*g2^17*t^6.53 + (2*g2^29*t^6.56)/g1^7 + (2*g1^21*t^6.64)/g2^15 + (3*g1^9*t^6.67)/g2^3 + (2*g2^9*t^6.7)/g1^3 + (4*g2^21*t^6.73)/g1^15 + (g1^13*t^6.81)/g2^23 + (g1*t^6.84)/g2^11 + (3*g2*t^6.87)/g1^11 + (g1^5*t^6.98)/g2^31 + g1^34*g2^10*t^7. + t^7.01/(g1^7*g2^19) + g1^22*g2^22*t^7.03 + g1^10*g2^34*t^7.06 + t^7.15/(g1^3*g2^39) + g1^26*g2^2*t^7.17 + g1^14*g2^14*t^7.2 + 2*g1^2*g2^26*t^7.23 + (2*g1^18*t^7.34)/g2^6 + 2*g1^6*g2^6*t^7.37 + (g2^18*t^7.4)/g1^6 + (2*g1^10*t^7.51)/g2^14 + t^7.54/(g1^2*g2^2) + (6*g2^10*t^7.57)/g1^14 + (2*g1^2*t^7.68)/g2^22 + g1^31*g2^19*t^7.7 + (3*t^7.71)/(g1^10*g2^10) + 2*g1^19*g2^31*t^7.73 + (g2^2*t^7.74)/g1^22 + (g1^35*t^7.84)/g2 + (2*t^7.85)/(g1^6*g2^30) + g1^23*g2^11*t^7.87 + t^7.88/(g1^18*g2^18) + (g1^27*t^8.01)/g2^9 + t^8.02/(g1^14*g2^38) + g1^15*g2^3*t^8.04 + 3*g1^3*g2^15*t^8.07 + (g2^27*t^8.1)/g1^9 - (2*g1^7*t^8.21)/g2^5 + g1^36*g2^36*t^8.23 - (6*g2^7*t^8.24)/g1^5 + (g2^19*t^8.27)/g1^17 - t^8.38/(g1*g2^13) + (3*t^8.41)/(g1^13*g2) + (g1^44*t^8.52)/g2^4 + 2*g1^32*g2^8*t^8.54 + (2*t^8.55)/(g1^9*g2^21) + 4*g1^20*g2^20*t^8.57 + (2*t^8.58)/(g1^21*g2^9) + g1^8*g2^32*t^8.6 + (g2^44*t^8.63)/g1^4 + (g1^36*t^8.69)/g2^12 + g1^24*t^8.72 + (2*t^8.72)/(g1^17*g2^29) - 2*g1^12*g2^12*t^8.74 + t^8.75/(g1^29*g2^17) + 2*g2^24*t^8.77 + (3*g2^36*t^8.8)/g1^12 + (2*g1^28*t^8.86)/g2^20 + t^8.89/(g1^25*g2^37) + (3*g1^16*t^8.89)/g2^8 + 3*g1^4*g2^4*t^8.91 + (2*g2^16*t^8.94)/g1^8 + (5*g2^28*t^8.97)/g1^20 - t^4.54/(g1^2*g2^2*y) - (g2^5*t^6.79)/(g1^7*y) - t^6.93/(g1^3*g2^15*y) + (3*g1^2*g2^2*t^7.46)/y + (g2^14*t^7.49)/(g1^10*y) + (g1^6*t^7.6)/(g2^18*y) + t^7.63/(g1^6*g2^6*y) + (g1^19*g2^7*t^7.96)/y + (2*g1^7*g2^19*t^7.99)/y + (g1^11*t^8.13)/(g2*y) + (g2^11*t^8.16)/(g1*y) + (3*g1^3*t^8.3)/(g2^9*y) + (4*g2^3*t^8.33)/(g1^9*y) + (3*t^8.47)/(g1^5*g2^17*y) + (2*t^8.5)/(g1^17*g2^5*y) + t^8.64/(g1^13*g2^25*y) + (g1^20*t^8.8)/(g2^4*y) + (4*g1^8*g2^8*t^8.83)/y + (g1^12*t^8.97)/(g2^12*y) - (t^4.54*y)/(g1^2*g2^2) - (g2^5*t^6.79*y)/g1^7 - (t^6.93*y)/(g1^3*g2^15) + 3*g1^2*g2^2*t^7.46*y + (g2^14*t^7.49*y)/g1^10 + (g1^6*t^7.6*y)/g2^18 + (t^7.63*y)/(g1^6*g2^6) + g1^19*g2^7*t^7.96*y + 2*g1^7*g2^19*t^7.99*y + (g1^11*t^8.13*y)/g2 + (g2^11*t^8.16*y)/g1 + (3*g1^3*t^8.3*y)/g2^9 + (4*g2^3*t^8.33*y)/g1^9 + (3*t^8.47*y)/(g1^5*g2^17) + (2*t^8.5*y)/(g1^17*g2^5) + (t^8.64*y)/(g1^13*g2^25) + (g1^20*t^8.8*y)/g2^4 + 4*g1^8*g2^8*t^8.83*y + (g1^12*t^8.97*y)/g2^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2915 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ | 0.5776 | 0.7619 | 0.758 | [X:[], M:[1.0501, 0.8497, 0.9499, 1.1503, 0.6753, 0.7495], q:[0.7625, 0.1874], qb:[0.6623, 0.4879], phi:[0.475]] | 2*t^2.03 + t^2.25 + 2*t^2.55 + 2*t^2.85 + 2*t^3.45 + 3*t^4.05 + 3*t^4.27 + t^4.35 + t^4.5 + 3*t^4.58 + 2*t^4.8 + 5*t^4.88 + 4*t^5.1 + 5*t^5.4 + 3*t^5.48 + 3*t^5.7 - t^6. - t^4.42/y - t^4.42*y | detail | |
2916 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ | 0.6254 | 0.8161 | 0.7663 | [X:[], M:[0.9488, 1.1536, 1.0512, 0.8464, 0.7304, 0.8464], q:[0.7372, 0.314], qb:[0.43, 0.4164], phi:[0.5256]] | 2*t^2.19 + t^2.23 + 2*t^2.54 + 2*t^3.15 + t^3.46 + t^3.5 + t^3.77 + t^4.08 + t^4.12 + t^4.16 + 3*t^4.38 + 2*t^4.42 + t^4.46 + 4*t^4.73 + 2*t^4.77 + 3*t^5.08 + 4*t^5.34 + 2*t^5.39 + t^5.65 + 5*t^5.69 + t^5.73 + t^5.96 - t^6. - t^4.58/y - t^4.58*y | detail | |
2917 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6465 | 0.8492 | 0.7613 | [X:[], M:[0.979, 1.063, 1.021, 0.937, 0.7366, 0.7949, 0.7786], q:[0.7448, 0.2762], qb:[0.4767, 0.4603], phi:[0.5105]] | 2*t^2.21 + t^2.26 + t^2.34 + t^2.38 + t^2.81 + 2*t^3.06 + t^3.19 + t^3.74 + t^4.29 + t^4.34 + t^4.39 + 3*t^4.42 + 2*t^4.47 + t^4.52 + 2*t^4.55 + 3*t^4.59 + t^4.64 + t^4.67 + t^4.72 + t^4.77 + 2*t^5.02 + t^5.07 + t^5.15 + t^5.2 + 4*t^5.27 + 2*t^5.32 + 3*t^5.4 + 2*t^5.45 + t^5.52 + t^5.57 + t^5.62 + t^5.87 + t^5.95 - 2*t^6. - t^4.53/y - t^4.53*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
541 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ | 0.6135 | 0.7921 | 0.7745 | [X:[], M:[0.9638, 1.1086, 1.0362, 0.8914, 0.7321], q:[0.7409, 0.2953], qb:[0.4546, 0.4368], phi:[0.5181]] | 2*t^2.2 + t^2.25 + t^2.67 + 2*t^3.11 + t^3.33 + t^3.53 + t^3.59 + t^3.75 + t^4.18 + t^4.23 + t^4.28 + 3*t^4.39 + 2*t^4.45 + t^4.5 + 2*t^4.87 + t^4.92 + 4*t^5.3 + t^5.35 + 2*t^5.36 + t^5.52 + 2*t^5.73 + 4*t^5.78 + t^5.84 + t^5.95 - 2*t^6. - t^4.55/y - t^4.55*y | detail |