Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1894 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ | 0.6305 | 0.8225 | 0.7665 | [M:[0.9712, 1.0863, 1.0288, 0.9137, 0.7209, 0.7784], q:[0.7428, 0.286], qb:[0.4788, 0.4349], phi:[0.5144]] | [M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{4}\phi_{1}q_{2}^{2}$ | -2 | 2*t^2.163 + t^2.294 + t^2.335 + t^2.741 + 2*t^3.086 + t^3.259 + t^3.533 + t^3.706 + t^4.153 + t^4.284 + 3*t^4.325 + t^4.416 + 2*t^4.457 + 2*t^4.498 + t^4.588 + t^4.629 + t^4.67 + 2*t^4.904 + t^5.035 + t^5.076 + 4*t^5.249 + 2*t^5.38 + 3*t^5.422 + t^5.482 + t^5.594 + 2*t^5.696 + 2*t^5.827 + 2*t^5.869 - 2*t^6. + t^6.041 - t^6.131 + t^6.173 + t^6.274 + 2*t^6.315 + 2*t^6.345 + 2*t^6.447 + 5*t^6.488 + t^6.518 + t^6.578 + 4*t^6.62 + 3*t^6.661 + t^6.71 + t^6.751 + 3*t^6.792 + 2*t^6.833 + t^6.883 + t^6.894 - t^6.924 + t^6.965 + t^7.006 + t^7.025 + 3*t^7.067 - t^7.096 + t^7.157 + t^7.198 + 4*t^7.239 + 7*t^7.412 + t^7.502 + t^7.543 + 5*t^7.584 + 2*t^7.645 + t^7.675 + t^7.686 + t^7.716 + 3*t^7.757 + t^7.776 + t^7.818 + 4*t^7.859 + t^7.929 + 2*t^7.99 + 3*t^8.031 - 4*t^8.163 + 2*t^8.204 + t^8.223 - 5*t^8.294 + t^8.306 + t^8.376 - t^8.426 + 3*t^8.437 + 3*t^8.478 + 3*t^8.508 + 3*t^8.569 + 3*t^8.61 + 7*t^8.651 + 3*t^8.68 + t^8.7 - 2*t^8.741 + 6*t^8.782 + 5*t^8.823 + t^8.832 + t^8.853 + 4*t^8.955 + 3*t^8.996 - t^4.543/y - t^6.706/y - t^6.878/y + t^7.325/y + (3*t^7.457)/y + (2*t^7.498)/y + (2*t^7.904)/y + t^8.035/y + t^8.076/y + t^8.208/y + (4*t^8.249)/y + (3*t^8.38)/y + (4*t^8.422)/y + t^8.553/y + t^8.594/y + (2*t^8.696)/y + (3*t^8.827)/y + (2*t^8.869)/y - t^4.543*y - t^6.706*y - t^6.878*y + t^7.325*y + 3*t^7.457*y + 2*t^7.498*y + 2*t^7.904*y + t^8.035*y + t^8.076*y + t^8.208*y + 4*t^8.249*y + 3*t^8.38*y + 4*t^8.422*y + t^8.553*y + t^8.594*y + 2*t^8.696*y + 3*t^8.827*y + 2*t^8.869*y | (2*g2^7*t^2.163)/g1^5 + (g1^7*t^2.294)/g2^5 + t^2.335/(g1^13*g2) + g1^12*g2^12*t^2.741 + (2*t^3.086)/(g1^4*g2^4) + t^3.259/(g1^12*g2^12) + g1*g2^13*t^3.533 + (g2^5*t^3.706)/g1^7 + (g2^22*t^4.153)/g1^2 + g1^10*g2^10*t^4.284 + (3*g2^14*t^4.325)/g1^10 + (g1^22*t^4.416)/g2^2 + 2*g1^2*g2^2*t^4.457 + (2*g2^6*t^4.498)/g1^18 + (g1^14*t^4.588)/g2^10 + t^4.629/(g1^6*g2^6) + t^4.67/(g1^26*g2^2) + 2*g1^7*g2^19*t^4.904 + g1^19*g2^7*t^5.035 + (g2^11*t^5.076)/g1 + (4*g2^3*t^5.249)/g1^9 + (2*g1^3*t^5.38)/g2^9 + (3*t^5.422)/(g1^17*g2^5) + g1^24*g2^24*t^5.482 + t^5.594/(g1^25*g2^13) + (2*g2^20*t^5.696)/g1^4 + 2*g1^8*g2^8*t^5.827 + (2*g2^12*t^5.869)/g1^12 - 2*t^6. + (g2^4*t^6.041)/g1^20 - (g1^12*t^6.131)/g2^12 + t^6.173/(g1^8*g2^8) + g1^13*g2^25*t^6.274 + (2*g2^29*t^6.315)/g1^7 + (2*t^6.345)/(g1^16*g2^16) + 2*g1^5*g2^17*t^6.447 + (5*g2^21*t^6.488)/g1^15 + t^6.518/(g1^24*g2^24) + g1^17*g2^5*t^6.578 + (4*g2^9*t^6.62)/g1^3 + (3*g2^13*t^6.661)/g1^23 + (g1^29*t^6.71)/g2^7 + (g1^9*t^6.751)/g2^3 + (3*g2*t^6.792)/g1^11 + (2*g2^5*t^6.833)/g1^31 + (g1^21*t^6.883)/g2^15 + g1^10*g2^34*t^6.894 - (g1*t^6.924)/g2^11 + t^6.965/(g1^19*g2^7) + t^7.006/(g1^39*g2^3) + g1^22*g2^22*t^7.025 + 3*g1^2*g2^26*t^7.067 - t^7.096/(g1^7*g2^19) + g1^34*g2^10*t^7.157 + g1^14*g2^14*t^7.198 + (4*g2^18*t^7.239)/g1^6 + (7*g2^10*t^7.412)/g1^14 + (g1^18*t^7.502)/g2^6 + t^7.543/(g1^2*g2^2) + (5*g2^2*t^7.584)/g1^22 + 2*g1^19*g2^31*t^7.645 + (g1^10*t^7.675)/g2^14 + (g2^35*t^7.686)/g1 + t^7.716/(g1^10*g2^10) + (3*t^7.757)/(g1^30*g2^6) + g1^31*g2^19*t^7.776 + g1^11*g2^23*t^7.818 + (4*g2^27*t^7.859)/g1^9 + t^7.929/(g1^38*g2^14) + 2*g1^3*g2^15*t^7.99 + (3*g2^19*t^8.031)/g1^17 - (4*g2^7*t^8.163)/g1^5 + (2*g2^11*t^8.204)/g1^25 + g1^36*g2^36*t^8.223 - (5*g1^7*t^8.294)/g2^5 + (g2^44*t^8.306)/g1^4 + (g2^3*t^8.376)/g1^33 - (g1^19*t^8.426)/g2^17 + 3*g1^8*g2^32*t^8.437 + (3*g2^36*t^8.478)/g1^12 + (3*t^8.508)/(g1^21*g2^9) + 3*g1^20*g2^20*t^8.569 + 3*g2^24*t^8.61 + (7*g2^28*t^8.651)/g1^20 + (3*t^8.68)/(g1^29*g2^17) + g1^32*g2^8*t^8.7 - 2*g1^12*g2^12*t^8.741 + (6*g2^16*t^8.782)/g1^8 + (5*g2^20*t^8.823)/g1^28 + (g1^44*t^8.832)/g2^4 + t^8.853/(g1^37*g2^25) + (4*g2^8*t^8.955)/g1^16 + (3*g2^12*t^8.996)/g1^36 - t^4.543/(g1^2*g2^2*y) - (g2^5*t^6.706)/(g1^7*y) - t^6.878/(g1^15*g2^3*y) + (g2^14*t^7.325)/(g1^10*y) + (3*g1^2*g2^2*t^7.457)/y + (2*g2^6*t^7.498)/(g1^18*y) + (2*g1^7*g2^19*t^7.904)/y + (g1^19*g2^7*t^8.035)/y + (g2^11*t^8.076)/(g1*y) + (g1^11*t^8.208)/(g2*y) + (4*g2^3*t^8.249)/(g1^9*y) + (3*g1^3*t^8.38)/(g2^9*y) + (4*t^8.422)/(g1^17*g2^5*y) + t^8.553/(g1^5*g2^17*y) + t^8.594/(g1^25*g2^13*y) + (2*g2^20*t^8.696)/(g1^4*y) + (3*g1^8*g2^8*t^8.827)/y + (2*g2^12*t^8.869)/(g1^12*y) - (t^4.543*y)/(g1^2*g2^2) - (g2^5*t^6.706*y)/g1^7 - (t^6.878*y)/(g1^15*g2^3) + (g2^14*t^7.325*y)/g1^10 + 3*g1^2*g2^2*t^7.457*y + (2*g2^6*t^7.498*y)/g1^18 + 2*g1^7*g2^19*t^7.904*y + g1^19*g2^7*t^8.035*y + (g2^11*t^8.076*y)/g1 + (g1^11*t^8.208*y)/g2 + (4*g2^3*t^8.249*y)/g1^9 + (3*g1^3*t^8.38*y)/g2^9 + (4*t^8.422*y)/(g1^17*g2^5) + (t^8.553*y)/(g1^5*g2^17) + (t^8.594*y)/(g1^25*g2^13) + (2*g2^20*t^8.696*y)/g1^4 + 3*g1^8*g2^8*t^8.827*y + (2*g2^12*t^8.869*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2919 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.6254 | 0.8172 | 0.7653 | [M:[0.9459, 1.1624, 1.0541, 0.8376, 0.7293, 0.8376], q:[0.7365, 0.3177], qb:[0.426, 0.4116], phi:[0.5271]] | 2*t^2.188 + t^2.231 + 2*t^2.513 + 2*t^3.162 + t^3.444 + t^3.487 + t^3.769 + t^4.051 + t^4.094 + t^4.137 + 3*t^4.376 + 2*t^4.419 + t^4.462 + 4*t^4.701 + 2*t^4.744 + 3*t^5.025 + 4*t^5.35 + 2*t^5.393 + 2*t^5.632 + 5*t^5.675 + 3*t^5.957 - t^6. - t^4.581/y - t^4.581*y | detail | |
2918 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | 0.6264 | 0.8129 | 0.7706 | [M:[0.9842, 1.0474, 1.0158, 0.9526, 0.7618, 0.7934], q:[0.7461, 0.2697], qb:[0.4605, 0.4921], phi:[0.5079]] | t^2.191 + 2*t^2.286 + t^2.38 + t^2.858 + 2*t^3.047 + t^3.142 + t^3.714 + t^3.809 + t^4.287 + 2*t^4.382 + 3*t^4.476 + 4*t^4.571 + 2*t^4.666 + t^4.76 + t^5.049 + 2*t^5.143 + 3*t^5.238 + 4*t^5.333 + 3*t^5.428 + t^5.522 + t^5.716 + t^5.905 - t^4.524/y - t^4.524*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
541 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6135 | 0.7921 | 0.7745 | [M:[0.9638, 1.1086, 1.0362, 0.8914, 0.7321], q:[0.7409, 0.2953], qb:[0.4546, 0.4368], phi:[0.5181]] | 2*t^2.196 + t^2.249 + t^2.674 + 2*t^3.109 + t^3.326 + t^3.533 + t^3.587 + t^3.751 + t^4.175 + t^4.228 + t^4.282 + 3*t^4.392 + 2*t^4.446 + t^4.499 + 2*t^4.87 + t^4.924 + 4*t^5.305 + t^5.348 + 2*t^5.358 + t^5.522 + 2*t^5.73 + 4*t^5.783 + t^5.836 + t^5.947 - 2*t^6. - t^4.554/y - t^4.554*y | detail |