Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
339 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ | 0.7729 | 0.9519 | 0.812 | [M:[0.7777, 1.2223, 0.7777, 0.7777, 0.7777, 0.7473], q:[0.596, 0.6263], qb:[0.6263, 0.596], phi:[0.3888]] | [M:[[-4, -4, 0, 0], [2, 2, 2, 2], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$ | ${}M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$ | -4 | t^2.242 + 4*t^2.333 + t^3.576 + t^3.667 + t^4.484 + 4*t^4.575 + 10*t^4.666 + 3*t^4.742 + 4*t^4.833 + 3*t^4.925 + t^5.818 + t^5.909 - 4*t^6. - 4*t^6.091 + t^6.726 + 4*t^6.817 + 10*t^6.908 + 3*t^6.984 + 20*t^6.999 + 12*t^7.075 + t^7.152 + 12*t^7.167 + t^7.243 + 8*t^7.258 + t^8.06 + t^8.151 - 7*t^8.242 + 3*t^8.318 - 22*t^8.333 - 13*t^8.424 - 4*t^8.5 - 4*t^8.592 + t^8.968 - t^4.167/y - t^6.408/y - (4*t^6.5)/y + (4*t^7.575)/y + (6*t^7.666)/y + (4*t^7.833)/y + t^7.925/y - t^8.65/y - (4*t^8.742)/y + t^8.818/y - (10*t^8.833)/y + (5*t^8.909)/y - t^4.167*y - t^6.408*y - 4*t^6.5*y + 4*t^7.575*y + 6*t^7.666*y + 4*t^7.833*y + t^7.925*y - t^8.65*y - 4*t^8.742*y + t^8.818*y - 10*t^8.833*y + 5*t^8.909*y | t^2.242/(g2^4*g3^4) + t^2.333/(g1^4*g2^4) + t^2.333/(g1^4*g3^4) + t^2.333/(g2^4*g4^4) + t^2.333/(g3^4*g4^4) + g1^4*g4^4*t^3.576 + g1^2*g2^2*g3^2*g4^2*t^3.667 + t^4.484/(g2^8*g3^8) + t^4.575/(g1^4*g2^4*g3^8) + t^4.575/(g1^4*g2^8*g3^4) + t^4.575/(g2^4*g3^8*g4^4) + t^4.575/(g2^8*g3^4*g4^4) + t^4.666/(g1^8*g2^8) + t^4.666/(g1^8*g3^8) + t^4.666/(g1^8*g2^4*g3^4) + t^4.666/(g2^8*g4^8) + t^4.666/(g3^8*g4^8) + t^4.666/(g2^4*g3^4*g4^8) + t^4.666/(g1^4*g2^8*g4^4) + t^4.666/(g1^4*g3^8*g4^4) + (2*t^4.666)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*t^4.742)/(g2*g3*g4) + (g1^3*g4^3*t^4.742)/(g2*g3) + (g4^7*t^4.742)/(g1*g2*g3) + (g1^3*g2^3*t^4.833)/(g3*g4) + (g1^3*g3^3*t^4.833)/(g2*g4) + (g2^3*g4^3*t^4.833)/(g1*g3) + (g3^3*g4^3*t^4.833)/(g1*g2) + (g2^7*t^4.925)/(g1*g3*g4) + (g2^3*g3^3*t^4.925)/(g1*g4) + (g3^7*t^4.925)/(g1*g2*g4) + (g1^4*g4^4*t^5.818)/(g2^4*g3^4) + (g1^2*g4^2*t^5.909)/(g2^2*g3^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 + (g1^2*g2^2*t^6.)/(g3^2*g4^2) + (g1^2*g3^2*t^6.)/(g2^2*g4^2) + (g2^2*g4^2*t^6.)/(g1^2*g3^2) + (g3^2*g4^2*t^6.)/(g1^2*g2^2) - (g4^4*t^6.)/g1^4 - (g2^4*t^6.091)/g1^4 - (g3^4*t^6.091)/g1^4 - (g2^4*t^6.091)/g4^4 - (g3^4*t^6.091)/g4^4 + t^6.726/(g2^12*g3^12) + t^6.817/(g1^4*g2^8*g3^12) + t^6.817/(g1^4*g2^12*g3^8) + t^6.817/(g2^8*g3^12*g4^4) + t^6.817/(g2^12*g3^8*g4^4) + t^6.908/(g1^8*g2^4*g3^12) + t^6.908/(g1^8*g2^8*g3^8) + t^6.908/(g1^8*g2^12*g3^4) + t^6.908/(g2^4*g3^12*g4^8) + t^6.908/(g2^8*g3^8*g4^8) + t^6.908/(g2^12*g3^4*g4^8) + t^6.908/(g1^4*g2^4*g3^12*g4^4) + (2*t^6.908)/(g1^4*g2^8*g3^8*g4^4) + t^6.908/(g1^4*g2^12*g3^4*g4^4) + (g1^7*t^6.984)/(g2^5*g3^5*g4) + (g1^3*g4^3*t^6.984)/(g2^5*g3^5) + (g4^7*t^6.984)/(g1*g2^5*g3^5) + t^6.999/(g1^12*g2^12) + t^6.999/(g1^12*g3^12) + t^6.999/(g1^12*g2^4*g3^8) + t^6.999/(g1^12*g2^8*g3^4) + t^6.999/(g2^12*g4^12) + t^6.999/(g3^12*g4^12) + t^6.999/(g2^4*g3^8*g4^12) + t^6.999/(g2^8*g3^4*g4^12) + t^6.999/(g1^4*g2^12*g4^8) + t^6.999/(g1^4*g3^12*g4^8) + (2*t^6.999)/(g1^4*g2^4*g3^8*g4^8) + (2*t^6.999)/(g1^4*g2^8*g3^4*g4^8) + t^6.999/(g1^8*g2^12*g4^4) + t^6.999/(g1^8*g3^12*g4^4) + (2*t^6.999)/(g1^8*g2^4*g3^8*g4^4) + (2*t^6.999)/(g1^8*g2^8*g3^4*g4^4) + (g1^7*t^7.075)/(g2*g3^5*g4^5) + (g1^7*t^7.075)/(g2^5*g3*g4^5) + (2*g1^3*t^7.075)/(g2*g3^5*g4) + (2*g1^3*t^7.075)/(g2^5*g3*g4) + (2*g4^3*t^7.075)/(g1*g2*g3^5) + (2*g4^3*t^7.075)/(g1*g2^5*g3) + (g4^7*t^7.075)/(g1^5*g2*g3^5) + (g4^7*t^7.075)/(g1^5*g2^5*g3) + g1^8*g4^8*t^7.152 + (g1^3*g2^3*t^7.167)/(g3^5*g4^5) + (g1^3*t^7.167)/(g2*g3*g4^5) + (g1^3*g3^3*t^7.167)/(g2^5*g4^5) + (2*g2^3*t^7.167)/(g1*g3^5*g4) + (2*t^7.167)/(g1*g2*g3*g4) + (2*g3^3*t^7.167)/(g1*g2^5*g4) + (g2^3*g4^3*t^7.167)/(g1^5*g3^5) + (g4^3*t^7.167)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.167)/(g1^5*g2^5) + g1^6*g2^2*g3^2*g4^6*t^7.243 + (g2^7*t^7.258)/(g1*g3^5*g4^5) + (g2^3*t^7.258)/(g1*g3*g4^5) + (g3^3*t^7.258)/(g1*g2*g4^5) + (g3^7*t^7.258)/(g1*g2^5*g4^5) + (g2^7*t^7.258)/(g1^5*g3^5*g4) + (g2^3*t^7.258)/(g1^5*g3*g4) + (g3^3*t^7.258)/(g1^5*g2*g4) + (g3^7*t^7.258)/(g1^5*g2^5*g4) + (g1^4*g4^4*t^8.06)/(g2^8*g3^8) + (g1^2*g4^2*t^8.151)/(g2^6*g3^6) - t^8.242/g2^8 - t^8.242/g3^8 - (5*t^8.242)/(g2^4*g3^4) - (2*g1^4*t^8.242)/(g2^4*g3^4*g4^4) + (g1^2*t^8.242)/(g2^2*g3^6*g4^2) + (g1^2*t^8.242)/(g2^6*g3^2*g4^2) + (g4^2*t^8.242)/(g1^2*g2^2*g3^6) + (g4^2*t^8.242)/(g1^2*g2^6*g3^2) - (2*g4^4*t^8.242)/(g1^4*g2^4*g3^4) + (g1^11*g4^3*t^8.318)/(g2*g3) + (g1^7*g4^7*t^8.318)/(g2*g3) + (g1^3*g4^11*t^8.318)/(g2*g3) - (6*t^8.333)/(g1^4*g2^4) - (g2^4*t^8.333)/(g1^4*g3^8) - (6*t^8.333)/(g1^4*g3^4) - (g3^4*t^8.333)/(g1^4*g2^8) - (g1^4*t^8.333)/(g2^4*g4^8) - (g1^4*t^8.333)/(g3^4*g4^8) + (g1^2*g2^2*t^8.333)/(g3^6*g4^6) + (g1^2*t^8.333)/(g2^2*g3^2*g4^6) + (g1^2*g3^2*t^8.333)/(g2^6*g4^6) - (6*t^8.333)/(g2^4*g4^4) - (g2^4*t^8.333)/(g3^8*g4^4) - (6*t^8.333)/(g3^4*g4^4) - (g3^4*t^8.333)/(g2^8*g4^4) + (g2^2*t^8.333)/(g1^2*g3^6*g4^2) + (2*t^8.333)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*t^8.333)/(g1^2*g2^6*g4^2) + (g2^2*g4^2*t^8.333)/(g1^6*g3^6) + (g4^2*t^8.333)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.333)/(g1^6*g2^6) - (g4^4*t^8.333)/(g1^8*g2^4) - (g4^4*t^8.333)/(g1^8*g3^4) - t^8.424/g1^8 - (g2^4*t^8.424)/(g1^8*g3^4) - (g3^4*t^8.424)/(g1^8*g2^4) - t^8.424/g4^8 - (g2^4*t^8.424)/(g3^4*g4^8) - (g3^4*t^8.424)/(g2^4*g4^8) - (3*t^8.424)/(g1^4*g4^4) - (2*g2^4*t^8.424)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.424)/(g1^4*g2^4*g4^4) - (g1^7*g2^3*g3^3*t^8.5)/g4 - 2*g1^3*g2^3*g3^3*g4^3*t^8.5 - (g2^3*g3^3*g4^7*t^8.5)/g1 - (g1^3*g2^7*g3^3*t^8.592)/g4 - (g1^3*g2^3*g3^7*t^8.592)/g4 - (g2^7*g3^3*g4^3*t^8.592)/g1 - (g2^3*g3^7*g4^3*t^8.592)/g1 + t^8.968/(g2^16*g3^16) - t^4.167/(g1*g2*g3*g4*y) - t^6.408/(g1*g2^5*g3^5*g4*y) - t^6.5/(g1*g2*g3^5*g4^5*y) - t^6.5/(g1*g2^5*g3*g4^5*y) - t^6.5/(g1^5*g2*g3^5*g4*y) - t^6.5/(g1^5*g2^5*g3*g4*y) + t^7.575/(g1^4*g2^4*g3^8*y) + t^7.575/(g1^4*g2^8*g3^4*y) + t^7.575/(g2^4*g3^8*g4^4*y) + t^7.575/(g2^8*g3^4*g4^4*y) + t^7.666/(g1^8*g2^4*g3^4*y) + t^7.666/(g2^4*g3^4*g4^8*y) + t^7.666/(g1^4*g2^8*g4^4*y) + t^7.666/(g1^4*g3^8*g4^4*y) + (2*t^7.666)/(g1^4*g2^4*g3^4*g4^4*y) + (g1^3*g2^3*t^7.833)/(g3*g4*y) + (g1^3*g3^3*t^7.833)/(g2*g4*y) + (g2^3*g4^3*t^7.833)/(g1*g3*y) + (g3^3*g4^3*t^7.833)/(g1*g2*y) + (g2^3*g3^3*t^7.925)/(g1*g4*y) - t^8.65/(g1*g2^9*g3^9*g4*y) - t^8.742/(g1*g2^5*g3^9*g4^5*y) - t^8.742/(g1*g2^9*g3^5*g4^5*y) - t^8.742/(g1^5*g2^5*g3^9*g4*y) - t^8.742/(g1^5*g2^9*g3^5*g4*y) + (g1^4*g4^4*t^8.818)/(g2^4*g3^4*y) - t^8.833/(g1*g2*g3^9*g4^9*y) - t^8.833/(g1*g2^5*g3^5*g4^9*y) - t^8.833/(g1*g2^9*g3*g4^9*y) - t^8.833/(g1^5*g2*g3^9*g4^5*y) - (2*t^8.833)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.833/(g1^5*g2^9*g3*g4^5*y) - t^8.833/(g1^9*g2*g3^9*g4*y) - t^8.833/(g1^9*g2^5*g3^5*g4*y) - t^8.833/(g1^9*g2^9*g3*g4*y) + (g1^4*t^8.909)/(g2^4*y) + (g1^4*t^8.909)/(g3^4*y) + (g1^2*g4^2*t^8.909)/(g2^2*g3^2*y) + (g4^4*t^8.909)/(g2^4*y) + (g4^4*t^8.909)/(g3^4*y) - (t^4.167*y)/(g1*g2*g3*g4) - (t^6.408*y)/(g1*g2^5*g3^5*g4) - (t^6.5*y)/(g1*g2*g3^5*g4^5) - (t^6.5*y)/(g1*g2^5*g3*g4^5) - (t^6.5*y)/(g1^5*g2*g3^5*g4) - (t^6.5*y)/(g1^5*g2^5*g3*g4) + (t^7.575*y)/(g1^4*g2^4*g3^8) + (t^7.575*y)/(g1^4*g2^8*g3^4) + (t^7.575*y)/(g2^4*g3^8*g4^4) + (t^7.575*y)/(g2^8*g3^4*g4^4) + (t^7.666*y)/(g1^8*g2^4*g3^4) + (t^7.666*y)/(g2^4*g3^4*g4^8) + (t^7.666*y)/(g1^4*g2^8*g4^4) + (t^7.666*y)/(g1^4*g3^8*g4^4) + (2*t^7.666*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g2^3*t^7.833*y)/(g3*g4) + (g1^3*g3^3*t^7.833*y)/(g2*g4) + (g2^3*g4^3*t^7.833*y)/(g1*g3) + (g3^3*g4^3*t^7.833*y)/(g1*g2) + (g2^3*g3^3*t^7.925*y)/(g1*g4) - (t^8.65*y)/(g1*g2^9*g3^9*g4) - (t^8.742*y)/(g1*g2^5*g3^9*g4^5) - (t^8.742*y)/(g1*g2^9*g3^5*g4^5) - (t^8.742*y)/(g1^5*g2^5*g3^9*g4) - (t^8.742*y)/(g1^5*g2^9*g3^5*g4) + (g1^4*g4^4*t^8.818*y)/(g2^4*g3^4) - (t^8.833*y)/(g1*g2*g3^9*g4^9) - (t^8.833*y)/(g1*g2^5*g3^5*g4^9) - (t^8.833*y)/(g1*g2^9*g3*g4^9) - (t^8.833*y)/(g1^5*g2*g3^9*g4^5) - (2*t^8.833*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.833*y)/(g1^5*g2^9*g3*g4^5) - (t^8.833*y)/(g1^9*g2*g3^9*g4) - (t^8.833*y)/(g1^9*g2^5*g3^5*g4) - (t^8.833*y)/(g1^9*g2^9*g3*g4) + (g1^4*t^8.909*y)/g2^4 + (g1^4*t^8.909*y)/g3^4 + (g1^2*g4^2*t^8.909*y)/(g2^2*g3^2) + (g4^4*t^8.909*y)/g2^4 + (g4^4*t^8.909*y)/g3^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
536 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{7}$ | 0.7566 | 0.9235 | 0.8193 | [M:[0.8325, 1.2021, 0.7634, 0.797, 0.7989, 0.7634, 1.1675], q:[0.5669, 0.6005], qb:[0.6361, 0.6005], phi:[0.399]] | 2*t^2.29 + t^2.391 + t^2.397 + 2*t^3.502 + t^3.606 + 3*t^4.58 + t^4.599 + 2*t^4.681 + 2*t^4.687 + 2*t^4.699 + t^4.782 + t^4.788 + t^4.794 + 3*t^4.8 + t^4.806 + 2*t^4.907 + t^5.014 + 3*t^5.793 + 2*t^5.896 + t^5.997 - 6*t^6. - t^4.197/y - t^4.197*y | detail | |
535 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ | 0.7203 | 0.8807 | 0.8179 | [M:[0.9121, 1.0959, 0.896, 1.0183, 0.7898, 0.9817], q:[0.5256, 0.5623], qb:[0.4561, 0.648], phi:[0.452]] | t^2.369 + t^2.688 + t^2.736 + t^2.945 + t^3.055 + t^3.288 + t^3.521 + t^4.093 + t^4.301 + t^4.411 + t^4.51 + t^4.62 + t^4.668 + t^4.73 + t^4.739 + t^4.877 + t^4.987 + t^5.057 + t^5.106 + t^5.244 + t^5.314 + t^5.376 + t^5.424 + t^5.473 + t^5.657 + t^5.89 + t^5.976 - 3*t^6. - t^4.356/y - t^4.356*y | detail | |
534 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ | 0.7331 | 0.8939 | 0.8201 | [M:[0.8539, 1.1461, 0.8539, 0.8539, 0.8539, 1.0], q:[0.6461, 0.5], qb:[0.5, 0.6461], phi:[0.427]] | 4*t^2.562 + t^3. + t^3.438 + t^3.876 + 3*t^4.281 + 4*t^4.719 + 10*t^5.124 + 3*t^5.157 - 3*t^6. - t^4.281/y - t^4.281*y | detail | |
539 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ | 0.7904 | 0.9838 | 0.8034 | [M:[0.7619, 1.2381, 0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] | 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. - t^4.143/y - t^4.143*y | detail | {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 26/21, M3: 16/21, M4: 16/21, M5: 16/21, M6: 16/21, M7: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
212 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ | 0.7546 | 0.9174 | 0.8226 | [M:[0.7904, 1.2096, 0.7904, 0.7904, 0.7904], q:[0.6048, 0.6048], qb:[0.6048, 0.6048], phi:[0.3952]] | 4*t^2.371 + 3*t^3.629 + 10*t^4.743 + 10*t^4.814 - 4*t^6. - t^4.186/y - t^4.186*y | detail |