Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57730 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ | 0.9863 | 1.1908 | 0.8283 | [X:[1.4926, 1.5, 1.5, 1.5074], M:[0.7278], q:[0.2599, 0.2525], qb:[0.2475, 0.2401], phi:[0.5]] | [X:[[0, -1], [0, 0], [0, 0], [0, 1]], M:[[3, 1]], q:[[-1, 0], [-1, -1]], qb:[[1, 1], [1, 0]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ | 0 | t^2.18 + t^2.98 + 3*t^3. + t^3.02 + t^3.68 + t^3.71 + t^3.79 + t^4.37 + 2*t^4.48 + 5*t^4.5 + 2*t^4.52 + t^5.16 + 4*t^5.18 + 2*t^5.21 + t^5.29 + t^5.32 + t^5.87 + t^5.89 + t^5.96 + t^5.98 + t^6.04 + t^6.55 + 4*t^6.66 + 7*t^6.68 + 4*t^6.71 + 2*t^6.73 + 2*t^6.77 + t^6.79 - t^6.82 + t^6.84 + t^7.34 + 5*t^7.37 + 3*t^7.39 + t^7.41 + 2*t^7.46 + 9*t^7.48 + 13*t^7.5 + 7*t^7.52 + 2*t^7.54 + t^7.59 + t^8.05 + t^8.07 + t^8.14 + t^8.16 + 3*t^8.18 + 3*t^8.21 + t^8.23 + t^8.29 - 2*t^8.32 - 2*t^8.34 + t^8.73 + 4*t^8.84 + 8*t^8.87 + 6*t^8.89 + 3*t^8.91 + t^8.93 + 5*t^8.96 - t^8.98 - t^4.5/y - t^6./y - t^6.68/y + t^7.5/y + t^8.16/y + (2*t^8.18)/y + t^8.21/y + t^8.32/y + t^8.89/y + (2*t^8.98)/y - t^4.5*y - t^6.*y - t^6.68*y + t^7.5*y + t^8.16*y + 2*t^8.18*y + t^8.21*y + t^8.32*y + t^8.89*y + 2*t^8.98*y | g1^3*g2*t^2.18 + t^2.98/g2 + 3*t^3. + g2*t^3.02 + g1^3*g2*t^3.68 + g1^3*g2^2*t^3.71 + t^3.79/(g1^3*g2^2) + g1^6*g2^2*t^4.37 + (2*t^4.48)/g2 + 5*t^4.5 + 2*g2*t^4.52 + g1^3*t^5.16 + 4*g1^3*g2*t^5.18 + 2*g1^3*g2^2*t^5.21 + t^5.29/(g1^3*g2^2) + t^5.32/(g1^3*g2) + g1^6*g2^2*t^5.87 + g1^6*g2^3*t^5.89 + t^5.96/g2^2 + t^5.98/g2 + g2^2*t^6.04 + g1^9*g2^3*t^6.55 + 4*g1^3*t^6.66 + 7*g1^3*g2*t^6.68 + 4*g1^3*g2^2*t^6.71 + 2*g1^3*g2^3*t^6.73 + (2*t^6.77)/(g1^3*g2^3) + t^6.79/(g1^3*g2^2) - t^6.82/(g1^3*g2) + t^6.84/g1^3 + g1^6*g2*t^7.34 + 5*g1^6*g2^2*t^7.37 + 3*g1^6*g2^3*t^7.39 + g1^6*g2^4*t^7.41 + (2*t^7.46)/g2^2 + (9*t^7.48)/g2 + 13*t^7.5 + 7*g2*t^7.52 + 2*g2^2*t^7.54 + t^7.59/(g1^6*g2^4) + g1^9*g2^3*t^8.05 + g1^9*g2^4*t^8.07 + (g1^3*t^8.14)/g2 + g1^3*t^8.16 + 3*g1^3*g2*t^8.18 + 3*g1^3*g2^2*t^8.21 + g1^3*g2^3*t^8.23 + t^8.29/(g1^3*g2^2) - (2*t^8.32)/(g1^3*g2) - (2*t^8.34)/g1^3 + g1^12*g2^4*t^8.73 + 4*g1^6*g2*t^8.84 + 8*g1^6*g2^2*t^8.87 + 6*g1^6*g2^3*t^8.89 + 3*g1^6*g2^4*t^8.91 + t^8.93/g2^3 + (5*t^8.96)/g2^2 - t^8.98/g2 - t^4.5/y - t^6./y - (g1^3*g2*t^6.68)/y + t^7.5/y + (g1^3*t^8.16)/y + (2*g1^3*g2*t^8.18)/y + (g1^3*g2^2*t^8.21)/y + t^8.32/(g1^3*g2*y) + (g1^6*g2^3*t^8.89)/y + (2*t^8.98)/(g2*y) - t^4.5*y - t^6.*y - g1^3*g2*t^6.68*y + t^7.5*y + g1^3*t^8.16*y + 2*g1^3*g2*t^8.18*y + g1^3*g2^2*t^8.21*y + (t^8.32*y)/(g1^3*g2) + g1^6*g2^3*t^8.89*y + (2*t^8.98*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58623 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.9582 | 1.1533 | 0.8309 | [X:[1.6209, 1.5, 1.5, 1.3791], M:[0.8791], q:[0.1667, 0.2876], qb:[0.2124, 0.3333], phi:[0.5]] | 2*t^2.64 + 3*t^3. + t^3.36 + t^3.73 + t^3.77 + 3*t^4.14 + 5*t^4.5 + 3*t^4.86 + t^5.23 + 4*t^5.27 + 4*t^5.64 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
58619 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.9876 | 1.1932 | 0.8277 | [X:[1.5348, 1.5, 1.5, 1.4652], M:[0.7445, 0.9652], q:[0.2402, 0.275], qb:[0.225, 0.2598], phi:[0.5]] | t^2.23 + 2*t^2.9 + 3*t^3. + t^3.63 + t^3.73 + t^3.87 + 2*t^4.4 + t^4.47 + 5*t^4.5 + 2*t^4.6 + 3*t^5.13 + 4*t^5.23 + t^5.27 + t^5.37 + 3*t^5.79 + t^5.86 + 3*t^5.9 + t^5.97 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
60665 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.0049 | 1.2236 | 0.8212 | [X:[1.5, 1.5, 1.5, 1.5], M:[0.75, 0.75], q:[0.25, 0.25], qb:[0.25, 0.25], phi:[0.5]] | 2*t^2.25 + 5*t^3. + 2*t^3.75 + 12*t^4.5 + 14*t^5.25 + 6*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | {a: 1029/1024, c: 1253/1024, X1: 3/2, X2: 3/2, X3: 3/2, X4: 3/2, M1: 3/4, M2: 3/4, q1: 1/4, q2: 1/4, qb1: 1/4, qb2: 1/4, phi1: 1/2} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47941 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ | 0.9864 | 1.191 | 0.8281 | [X:[1.4928, 1.5072, 1.4928, 1.5072], M:[0.725], q:[0.2631, 0.2487], qb:[0.2441, 0.2441], phi:[0.5]] | t^2.175 + 2*t^2.978 + t^3. + 2*t^3.022 + 2*t^3.697 + t^3.782 + t^4.35 + 4*t^4.478 + t^4.5 + 4*t^4.522 + 2*t^5.153 + t^5.175 + 4*t^5.197 + t^5.282 + t^5.325 + 2*t^5.872 + 3*t^5.957 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail |