Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57746 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.0052 | 1.2251 | 0.8205 | [X:[1.5, 1.5176, 1.4824, 1.5], M:[0.7412, 0.7412], q:[0.2588, 0.2412], qb:[0.2412, 0.2588], phi:[0.5]] | [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[3, 2, 1], [-3, -1, -1]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }M_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$ | 0 | 2*t^2.22 + t^2.95 + 3*t^3. + t^3.05 + 2*t^3.72 + 5*t^4.45 + 5*t^4.5 + 2*t^4.55 + 2*t^5.17 + 8*t^5.22 + 4*t^5.28 + t^5.89 + 4*t^5.95 + t^6.11 + 12*t^6.67 + 12*t^6.72 + 2*t^6.78 + 2*t^6.83 + 5*t^7.39 + 23*t^7.45 + 18*t^7.5 + 7*t^7.55 + 2*t^7.61 + 2*t^8.12 + 6*t^8.17 + 2*t^8.22 - 4*t^8.28 - 2*t^8.33 + t^8.84 + 22*t^8.89 + 19*t^8.95 - t^4.5/y - t^6./y - (2*t^6.72)/y + t^7.45/y + t^7.5/y + (2*t^8.17)/y + (4*t^8.22)/y + (4*t^8.28)/y + (2*t^8.95)/y - t^4.5*y - t^6.*y - 2*t^6.72*y + t^7.45*y + t^7.5*y + 2*t^8.17*y + 4*t^8.22*y + 4*t^8.28*y + 2*t^8.95*y | t^2.22/(g1^3*g2*g3) + g1^3*g2^2*g3*t^2.22 + g2*t^2.95 + t^3. + t^3./g3 + g3*t^3. + t^3.05/g2 + t^3.72/(g1^3*g2*g3^2) + g1^3*g2^2*g3^2*t^3.72 + 3*g2*t^4.45 + t^4.45/(g1^6*g2^2*g3^2) + g1^6*g2^4*g3^2*t^4.45 + t^4.5 + (2*t^4.5)/g3 + 2*g3*t^4.5 + (2*t^4.55)/g2 + t^5.17/(g1^3*g3) + g1^3*g2^3*g3*t^5.17 + t^5.22/(g1^3*g2) + g1^3*g2^2*t^5.22 + (2*t^5.22)/(g1^3*g2*g3^2) + t^5.22/(g1^3*g2*g3) + g1^3*g2^2*g3*t^5.22 + 2*g1^3*g2^2*g3^2*t^5.22 + (2*t^5.28)/(g1^3*g2^2*g3) + 2*g1^3*g2*g3*t^5.28 + g2^2*t^5.89 + t^5.95/(g1^6*g2^2*g3^3) + (g2*t^5.95)/g3 + g2*g3*t^5.95 + g1^6*g2^4*g3^3*t^5.95 - 2*t^6. + t^6./g3^2 + g3^2*t^6. + t^6.11/g2^2 + t^6.67/(g1^3*g3^3) + t^6.67/(g1^9*g2^3*g3^3) + t^6.67/(g1^3*g3^2) + (3*t^6.67)/(g1^3*g3) + 3*g1^3*g2^3*g3*t^6.67 + g1^3*g2^3*g3^2*t^6.67 + g1^3*g2^3*g3^3*t^6.67 + g1^9*g2^6*g3^3*t^6.67 + (2*t^6.72)/(g1^3*g2) + 2*g1^3*g2^2*t^6.72 + t^6.72/(g1^3*g2*g3^3) + (3*t^6.72)/(g1^3*g2*g3^2) + 3*g1^3*g2^2*g3^2*t^6.72 + g1^3*g2^2*g3^3*t^6.72 - t^6.78/(g1^3*g2^2*g3^2) + (2*t^6.78)/(g1^3*g2^2*g3) + 2*g1^3*g2*g3*t^6.78 - g1^3*g2*g3^2*t^6.78 + g1^3*t^6.83 + t^6.83/(g1^3*g2^3) + 3*g2^2*t^7.39 + t^7.39/(g1^6*g2*g3^2) + g1^6*g2^5*g3^2*t^7.39 + 3*g2*t^7.45 + t^7.45/(g1^6*g2^2*g3^4) + (2*t^7.45)/(g1^6*g2^2*g3^3) + t^7.45/(g1^6*g2^2*g3^2) + t^7.45/(g1^6*g2^2*g3) + (5*g2*t^7.45)/g3 + 5*g2*g3*t^7.45 + g1^6*g2^4*g3*t^7.45 + g1^6*g2^4*g3^2*t^7.45 + 2*g1^6*g2^4*g3^3*t^7.45 + g1^6*g2^4*g3^4*t^7.45 + 8*t^7.5 + (2*t^7.5)/g3^2 + (2*t^7.5)/(g1^6*g2^3*g3^2) + t^7.5/g3 + g3*t^7.5 + 2*g3^2*t^7.5 + 2*g1^6*g2^3*g3^2*t^7.5 + t^7.55/g2 + (3*t^7.55)/(g2*g3) + (3*g3*t^7.55)/g2 + (2*t^7.61)/g2^2 + (g2*t^8.12)/(g1^3*g3) + g1^3*g2^4*g3*t^8.12 + t^8.17/g1^3 + g1^3*g2^3*t^8.17 + t^8.17/(g1^9*g2^3*g3^4) - t^8.17/(g1^3*g3^3) + (2*t^8.17)/(g1^3*g3^2) + 2*g1^3*g2^3*g3^2*t^8.17 - g1^3*g2^3*g3^3*t^8.17 + g1^9*g2^6*g3^4*t^8.17 + (2*t^8.22)/(g1^3*g2*g3^3) - (2*t^8.22)/(g1^3*g2*g3) + (g1^3*g2^2*t^8.22)/g3 + (g3*t^8.22)/(g1^3*g2) - 2*g1^3*g2^2*g3*t^8.22 + 2*g1^3*g2^2*g3^3*t^8.22 - t^8.28/(g1^3*g2^2) - g1^3*g2*t^8.28 - t^8.28/(g1^3*g2^2*g3) - g1^3*g2*g3*t^8.28 - g1^3*t^8.33 - t^8.33/(g1^3*g2^3) + g2^3*t^8.84 + 6*g2^2*t^8.89 + t^8.89/(g1^12*g2^4*g3^4) + t^8.89/(g1^6*g2*g3^4) + t^8.89/(g1^6*g2*g3^3) + (3*t^8.89)/(g1^6*g2*g3^2) + (g2^2*t^8.89)/g3^2 + (g2^2*t^8.89)/g3 + g2^2*g3*t^8.89 + g2^2*g3^2*t^8.89 + 3*g1^6*g2^5*g3^2*t^8.89 + g1^6*g2^5*g3^3*t^8.89 + g1^6*g2^5*g3^4*t^8.89 + g1^12*g2^8*g3^4*t^8.89 - 5*g2*t^8.95 + (2*t^8.95)/(g1^6*g2^2*g3^4) + (3*t^8.95)/(g1^6*g2^2*g3^3) + (g2*t^8.95)/g3^2 + (2*t^8.95)/(g1^6*g2^2*g3) + (4*g2*t^8.95)/g3 + 4*g2*g3*t^8.95 + 2*g1^6*g2^4*g3*t^8.95 + g2*g3^2*t^8.95 + 3*g1^6*g2^4*g3^3*t^8.95 + 2*g1^6*g2^4*g3^4*t^8.95 - t^4.5/y - t^6./y - t^6.72/(g1^3*g2*g3*y) - (g1^3*g2^2*g3*t^6.72)/y + (g2*t^7.45)/y + t^7.5/y + t^8.17/(g1^3*g3*y) + (g1^3*g2^3*g3*t^8.17)/y + t^8.22/(g1^3*g2*y) + (g1^3*g2^2*t^8.22)/y + t^8.22/(g1^3*g2*g3^2*y) + (g1^3*g2^2*g3^2*t^8.22)/y + (2*t^8.28)/(g1^3*g2^2*g3*y) + (2*g1^3*g2*g3*t^8.28)/y - (2*g2*t^8.95)/y + t^8.95/(g1^6*g2^2*g3^3*y) - t^8.95/(g1^6*g2^2*g3^2*y) + (2*g2*t^8.95)/(g3*y) + (2*g2*g3*t^8.95)/y - (g1^6*g2^4*g3^2*t^8.95)/y + (g1^6*g2^4*g3^3*t^8.95)/y - t^4.5*y - t^6.*y - (t^6.72*y)/(g1^3*g2*g3) - g1^3*g2^2*g3*t^6.72*y + g2*t^7.45*y + t^7.5*y + (t^8.17*y)/(g1^3*g3) + g1^3*g2^3*g3*t^8.17*y + (t^8.22*y)/(g1^3*g2) + g1^3*g2^2*t^8.22*y + (t^8.22*y)/(g1^3*g2*g3^2) + g1^3*g2^2*g3^2*t^8.22*y + (2*t^8.28*y)/(g1^3*g2^2*g3) + 2*g1^3*g2*g3*t^8.28*y - 2*g2*t^8.95*y + (t^8.95*y)/(g1^6*g2^2*g3^3) - (t^8.95*y)/(g1^6*g2^2*g3^2) + (2*g2*t^8.95*y)/g3 + 2*g2*g3*t^8.95*y - g1^6*g2^4*g3^2*t^8.95*y + g1^6*g2^4*g3^3*t^8.95*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58628 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.9786 | 1.1906 | 0.8219 | [X:[1.5248, 1.392, 1.608, 1.4752], M:[0.892, 0.7159], q:[0.1584, 0.2912], qb:[0.3168, 0.2336], phi:[0.5]] | t^2.15 + 2*t^2.68 + t^2.93 + t^3. + t^3.07 + t^3.32 + t^3.72 + t^4.1 + 2*t^4.18 + t^4.3 + 2*t^4.43 + t^4.5 + 2*t^4.57 + 5*t^4.82 + t^5.07 + t^5.15 + 2*t^5.22 + 4*t^5.35 + t^5.47 + 2*t^5.6 + t^5.68 + t^5.75 + t^5.85 + t^5.87 + t^5.93 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
58598 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.9601 | 1.1743 | 0.8175 | [X:[1.6071, 1.4283, 1.5717, 1.3929], M:[0.6788, 0.8929], q:[0.2141, 0.3929], qb:[0.1788, 0.2141], phi:[0.5]] | t^2.04 + 2*t^2.68 + t^2.78 + t^3. + 2*t^3.22 + t^3.32 + t^4.07 + 2*t^4.18 + 2*t^4.28 + 2*t^4.5 + 5*t^4.72 + 4*t^4.82 + t^5.04 + 2*t^5.25 + 4*t^5.36 + 2*t^5.46 + t^5.57 + t^5.68 + 3*t^5.89 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
58942 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}q_{2}^{2}$ | 1.0244 | 1.2604 | 0.8128 | [X:[1.5101, 1.5101, 1.4899, 1.4899], M:[0.7349, 0.755, 0.7349], q:[0.255, 0.255], qb:[0.2349, 0.255], phi:[0.5]] | 2*t^2.2 + t^2.27 + 2*t^2.97 + t^3. + 2*t^3.03 + t^3.67 + 3*t^4.41 + 6*t^4.47 + t^4.5 + 5*t^4.53 + 5*t^5.17 + 2*t^5.2 + 7*t^5.23 + t^5.27 + 4*t^5.3 + 2*t^5.88 + 3*t^5.94 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
58563 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.0087 | 1.2346 | 0.8171 | [X:[1.5, 1.5566, 1.4434, 1.5], M:[0.7217, 0.7217, 0.9434], q:[0.2783, 0.2217], qb:[0.2217, 0.2783], phi:[0.5]] | 2*t^2.17 + 2*t^2.83 + 3*t^3. + 2*t^3.67 + 5*t^4.33 + 5*t^4.5 + 2*t^4.67 + 4*t^5. + 8*t^5.17 + 2*t^5.33 + 3*t^5.66 + 7*t^5.83 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | |
58618 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1.0051 | 1.2244 | 0.8209 | [X:[1.509, 1.509, 1.491, 1.491], M:[0.7485, 0.7425], q:[0.2505, 0.2505], qb:[0.2406, 0.2585], phi:[0.5]] | t^2.23 + t^2.25 + 2*t^2.97 + t^3. + 2*t^3.03 + t^3.72 + t^3.75 + t^4.46 + 5*t^4.47 + t^4.49 + t^4.5 + 4*t^4.53 + 2*t^5.2 + 3*t^5.22 + t^5.23 + 5*t^5.25 + 3*t^5.27 + 3*t^5.95 + t^5.96 + t^5.98 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47941 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ | 0.9864 | 1.191 | 0.8281 | [X:[1.4928, 1.5072, 1.4928, 1.5072], M:[0.725], q:[0.2631, 0.2487], qb:[0.2441, 0.2441], phi:[0.5]] | t^2.175 + 2*t^2.978 + t^3. + 2*t^3.022 + 2*t^3.697 + t^3.782 + t^4.35 + 4*t^4.478 + t^4.5 + 4*t^4.522 + 2*t^5.153 + t^5.175 + 4*t^5.197 + t^5.282 + t^5.325 + 2*t^5.872 + 3*t^5.957 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail |