Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57647 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.5157 1.7657 0.8584 [X:[], M:[0.6733, 0.6733], q:[0.498, 0.498], qb:[0.494, 0.502], phi:[0.3347]] [X:[], M:[[1, -5, 11], [-1, -5, -1]], q:[[-1, 0, -12], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, -1, 1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ ${}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ -3 t^2.01 + 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + 2*t^4. + t^4.02 + 2*t^4.03 + 3*t^4.04 + 4*t^4.98 + 4*t^5. + 4*t^5.01 + 5*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. + 4*t^6.01 + 5*t^6.02 + 2*t^6.04 + 3*t^6.05 + 4*t^6.06 + t^6.48 + 2*t^6.49 + t^6.5 + 3*t^6.98 + 4*t^6.99 + 7*t^7. + 12*t^7.02 + 8*t^7.03 + 8*t^7.04 + 3*t^7.05 + t^7.46 + t^7.48 + 6*t^7.49 + 5*t^7.51 + 2*t^7.52 + t^7.53 + 7*t^7.96 + 4*t^7.97 + 9*t^7.98 + 8*t^8. + 4*t^8.01 + 8*t^8.03 + 8*t^8.04 + 3*t^8.06 + 4*t^8.07 + 5*t^8.08 + 2*t^8.45 + 4*t^8.46 + 2*t^8.47 + 2*t^8.49 + 4*t^8.5 + 2*t^8.51 + 4*t^8.93 + 4*t^8.95 + 3*t^8.96 - 10*t^8.98 + 9*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - (2*t^6.02)/y - (2*t^6.98)/y - (2*t^7.)/y - (2*t^7.02)/y + t^7.04/y + (2*t^7.98)/y + (5*t^8.)/y + (3*t^8.02)/y - (3*t^8.04)/y + t^8.95/y + (4*t^8.98)/y - t^4.*y - t^5.01*y - t^6.01*y - 2*t^6.02*y - 2*t^6.98*y - 2*t^7.*y - 2*t^7.02*y + t^7.04*y + 2*t^7.98*y + 5*t^8.*y + 3*t^8.02*y - 3*t^8.04*y + t^8.95*y + 4*t^8.98*y (g3^2*t^2.01)/g2^2 + t^2.02/(g1*g2^5*g3) + (g1*g3^11*t^2.02)/g2^5 + g1*g2^6*t^2.98 + (g2^6*t^2.98)/(g1*g3^12) + t^3./(g1*g3^6) + g1*g3^6*t^3. + (g3^3*t^3.01)/g2^3 + t^4./(g1*g2*g3^5) + (g1*g3^7*t^4.)/g2 + (g3^4*t^4.02)/g2^4 + (g3*t^4.03)/(g1*g2^7) + (g1*g3^13*t^4.03)/g2^7 + t^4.04/(g1^2*g2^10*g3^2) + (g3^10*t^4.04)/g2^10 + (g1^2*g3^22*t^4.04)/g2^10 + (2*g2^4*t^4.98)/(g1*g3^10) + 2*g1*g2^4*g3^2*t^4.98 + (g2*t^5.)/(g1^2*g3^13) + (2*g2*t^5.)/g3 + g1^2*g2*g3^11*t^5. + (2*t^5.01)/(g1*g2^2*g3^4) + (2*g1*g3^8*t^5.01)/g2^2 + t^5.02/(g1^2*g2^5*g3^7) + (3*g3^5*t^5.02)/g2^5 + (g1^2*g3^17*t^5.02)/g2^5 + (g3^2*t^5.03)/(g1*g2^8) + (g1*g3^14*t^5.03)/g2^8 + g2^11*g3^7*t^5.47 + t^5.49/(g1*g2*g3^23) + (g1*t^5.49)/(g2*g3^11) + g2^5*g3^13*t^5.5 + g1^2*g2^12*t^5.95 + (g2^12*t^5.95)/(g1^2*g3^24) + (g2^12*t^5.95)/g3^12 + (g2^6*t^5.98)/(g1^2*g3^18) + (g2^6*t^5.98)/g3^6 + g1^2*g2^6*g3^6*t^5.98 + (g2^3*t^5.99)/(g1*g3^9) + g1*g2^3*g3^3*t^5.99 - 3*t^6. + (2*t^6.01)/(g1*g2^3*g3^3) + (2*g1*g3^9*t^6.01)/g2^3 + t^6.02/(g1^2*g2^6*g3^6) + (3*g3^6*t^6.02)/g2^6 + (g1^2*g3^18*t^6.02)/g2^6 + (g3^3*t^6.04)/(g1*g2^9) + (g1*g3^15*t^6.04)/g2^9 + t^6.05/(g1^2*g2^12) + (g3^12*t^6.05)/g2^12 + (g1^2*g3^24*t^6.05)/g2^12 + t^6.06/(g1^3*g2^15*g3^3) + (g3^9*t^6.06)/(g1*g2^15) + (g1*g3^21*t^6.06)/g2^15 + (g1^3*g3^33*t^6.06)/g2^15 + g2^10*g3^8*t^6.48 + t^6.49/(g1*g2^2*g3^22) + (g1*t^6.49)/(g2^2*g3^10) + g2^4*g3^14*t^6.5 + (g2^5*t^6.98)/(g1^2*g3^17) + (g2^5*t^6.98)/g3^5 + g1^2*g2^5*g3^7*t^6.98 + (2*g2^2*t^6.99)/(g1*g3^8) + 2*g1*g2^2*g3^4*t^6.99 + (2*t^7.)/(g1^2*g2*g3^11) + (3*g3*t^7.)/g2 + (2*g1^2*g3^13*t^7.)/g2 + t^7.02/(g1^3*g2^4*g3^14) + (5*t^7.02)/(g1*g2^4*g3^2) + (5*g1*g3^10*t^7.02)/g2^4 + (g1^3*g3^22*t^7.02)/g2^4 + (2*t^7.03)/(g1^2*g2^7*g3^5) + (4*g3^7*t^7.03)/g2^7 + (2*g1^2*g3^19*t^7.03)/g2^7 + t^7.04/(g1^3*g2^10*g3^8) + (3*g3^4*t^7.04)/(g1*g2^10) + (3*g1*g3^16*t^7.04)/g2^10 + (g1^3*g3^28*t^7.04)/g2^10 + (g3*t^7.05)/(g1^2*g2^13) + (g3^13*t^7.05)/g2^13 + (g1^2*g3^25*t^7.05)/g2^13 + g2^15*g3^3*t^7.46 - t^7.48/g3^18 + 2*g2^9*g3^9*t^7.48 + t^7.49/(g1^3*g2^3*g3^33) + (2*t^7.49)/(g1*g2^3*g3^21) + (2*g1*t^7.49)/(g2^3*g3^9) + (g1^3*g3^3*t^7.49)/g2^3 + (g1^2*t^7.51)/g2^6 + t^7.51/(g1^2*g2^6*g3^24) + t^7.51/(g2^6*g3^12) + 2*g2^3*g3^15*t^7.51 + (g3^12*t^7.52)/g1 + g1*g3^24*t^7.52 + (g3^21*t^7.53)/g2^3 + (2*g2^10*t^7.96)/(g1^2*g3^22) + (3*g2^10*t^7.96)/g3^10 + 2*g1^2*g2^10*g3^2*t^7.96 + (g2^7*t^7.97)/(g1^3*g3^25) + (g2^7*t^7.97)/(g1*g3^13) + (g1*g2^7*t^7.97)/g3 + g1^3*g2^7*g3^11*t^7.97 + (3*g2^4*t^7.98)/(g1^2*g3^16) + (3*g2^4*t^7.98)/g3^4 + 3*g1^2*g2^4*g3^8*t^7.98 + (g2*t^8.)/(g1^3*g3^19) + (3*g2*t^8.)/(g1*g3^7) + 3*g1*g2*g3^5*t^8. + g1^3*g2*g3^17*t^8. + (2*t^8.01)/(g1^2*g2^2*g3^10) + (2*g1^2*g3^14*t^8.01)/g2^2 + (2*t^8.03)/(g1^2*g2^8*g3^4) + (4*g3^8*t^8.03)/g2^8 + (2*g1^2*g3^20*t^8.03)/g2^8 + t^8.04/(g1^3*g2^11*g3^7) + (3*g3^5*t^8.04)/(g1*g2^11) + (3*g1*g3^17*t^8.04)/g2^11 + (g1^3*g3^29*t^8.04)/g2^11 + (g3^2*t^8.06)/(g1^2*g2^14) + (g3^14*t^8.06)/g2^14 + (g1^2*g3^26*t^8.06)/g2^14 + t^8.07/(g1^3*g2^17*g3) + (g3^11*t^8.07)/(g1*g2^17) + (g1*g3^23*t^8.07)/g2^17 + (g1^3*g3^35*t^8.07)/g2^17 + t^8.08/(g1^4*g2^20*g3^4) + (g3^8*t^8.08)/(g1^2*g2^20) + (g3^20*t^8.08)/g2^20 + (g1^2*g3^32*t^8.08)/g2^20 + (g1^4*g3^44*t^8.08)/g2^20 + (g2^17*t^8.45)/(g1*g3^5) + g1*g2^17*g3^7*t^8.45 + (g2^5*t^8.46)/(g1^2*g3^35) + (2*g2^5*t^8.46)/g3^23 + (g1^2*g2^5*t^8.46)/g3^11 + (g2^11*g3*t^8.47)/g1 + g1*g2^11*g3^13*t^8.47 + 2*g2^8*g3^10*t^8.49 + (2*t^8.5)/(g1*g2^4*g3^20) + (2*g1*t^8.5)/(g2^4*g3^8) + 2*g2^2*g3^16*t^8.51 + g1^3*g2^18*t^8.93 + (g2^18*t^8.93)/(g1^3*g3^36) + (g2^18*t^8.93)/(g1*g3^24) + (g1*g2^18*t^8.93)/g3^12 + (g2^12*t^8.95)/(g1^3*g3^30) + (g2^12*t^8.95)/(g1*g3^18) + (g1*g2^12*t^8.95)/g3^6 + g1^3*g2^12*g3^6*t^8.95 + (g2^9*t^8.96)/(g1^2*g3^21) + (g2^9*t^8.96)/g3^9 + g1^2*g2^9*g3^3*t^8.96 - 5*g1*g2^6*t^8.98 - (5*g2^6*t^8.98)/(g1*g3^12) + (3*g2^3*t^8.99)/(g1^2*g3^15) + (3*g2^3*t^8.99)/g3^3 + 3*g1^2*g2^3*g3^9*t^8.99 - (g3*t^4.)/(g2*y) - (g3^2*t^5.01)/(g2^2*y) - (g3^3*t^6.01)/(g2^3*y) - t^6.02/(g1*g2^6*y) - (g1*g3^12*t^6.02)/(g2^6*y) - (g2^5*t^6.98)/(g1*g3^11*y) - (g1*g2^5*g3*t^6.98)/y - t^7./(g1*g2*g3^5*y) - (g1*g3^7*t^7.)/(g2*y) - (2*g3^4*t^7.02)/(g2^4*y) + (g3^10*t^7.04)/(g2^10*y) + (g2^4*t^7.98)/(g1*g3^10*y) + (g1*g2^4*g3^2*t^7.98)/y + (g2*t^8.)/(g1^2*g3^13*y) + (3*g2*t^8.)/(g3*y) + (g1^2*g2*g3^11*t^8.)/y + t^8.02/(g1^2*g2^5*g3^7*y) + (g3^5*t^8.02)/(g2^5*y) + (g1^2*g3^17*t^8.02)/(g2^5*y) - t^8.04/(g1^2*g2^11*g3*y) - (g3^11*t^8.04)/(g2^11*y) - (g1^2*g3^23*t^8.04)/(g2^11*y) + (g2^12*t^8.95)/(g3^12*y) + (g2^6*t^8.98)/(g1^2*g3^18*y) + (2*g2^6*t^8.98)/(g3^6*y) + (g1^2*g2^6*g3^6*t^8.98)/y - (g3*t^4.*y)/g2 - (g3^2*t^5.01*y)/g2^2 - (g3^3*t^6.01*y)/g2^3 - (t^6.02*y)/(g1*g2^6) - (g1*g3^12*t^6.02*y)/g2^6 - (g2^5*t^6.98*y)/(g1*g3^11) - g1*g2^5*g3*t^6.98*y - (t^7.*y)/(g1*g2*g3^5) - (g1*g3^7*t^7.*y)/g2 - (2*g3^4*t^7.02*y)/g2^4 + (g3^10*t^7.04*y)/g2^10 + (g2^4*t^7.98*y)/(g1*g3^10) + g1*g2^4*g3^2*t^7.98*y + (g2*t^8.*y)/(g1^2*g3^13) + (3*g2*t^8.*y)/g3 + g1^2*g2*g3^11*t^8.*y + (t^8.02*y)/(g1^2*g2^5*g3^7) + (g3^5*t^8.02*y)/g2^5 + (g1^2*g3^17*t^8.02*y)/g2^5 - (t^8.04*y)/(g1^2*g2^11*g3) - (g3^11*t^8.04*y)/g2^11 - (g1^2*g3^23*t^8.04*y)/g2^11 + (g2^12*t^8.95*y)/g3^12 + (g2^6*t^8.98*y)/(g1^2*g3^18) + (2*g2^6*t^8.98*y)/g3^6 + g1^2*g2^6*g3^6*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60050 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.1739 1.3866 0.8466 [X:[1.5965], M:[1.1929, 0.8424], q:[0.2138, 0.5643], qb:[0.1897, 0.6109], phi:[0.4035]] t^2.26 + t^2.42 + t^2.47 + t^2.53 + t^3.53 + t^3.58 + 2*t^3.63 + t^3.68 + t^4.18 + t^4.19 + t^4.52 + 2*t^4.68 + t^4.74 + 2*t^4.79 + t^4.84 + 2*t^4.9 + t^4.95 + t^5. + t^5.05 + t^5.24 + t^5.34 + t^5.39 + t^5.4 + t^5.45 + t^5.56 + t^5.79 + t^5.84 + 2*t^5.89 + 2*t^5.95 - 3*t^6. - t^4.21/y - t^5.42/y - t^4.21*y - t^5.42*y detail
59461 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.3617 1.5883 0.8573 [X:[1.3733], M:[1.0, 0.733], q:[0.3081, 0.5751], qb:[0.3186, 0.5584], phi:[0.3733]] t^2.2 + t^2.24 + t^2.6 + t^2.68 + t^3. + t^3.36 + t^3.4 + t^3.72 + 2*t^4.12 + t^4.4 + t^4.44 + t^4.48 + t^4.52 + t^4.69 + t^4.71 + t^4.8 + 2*t^4.84 + t^4.88 + 2*t^4.92 + t^5.2 + t^5.24 + t^5.36 + t^5.43 + t^5.49 + t^5.56 + 3*t^5.6 + 2*t^5.64 + t^5.68 + t^5.81 + t^5.83 + t^5.92 + 2*t^5.96 - 2*t^6. - t^4.12/y - t^5.24/y - t^4.12*y - t^5.24*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47933 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.5159 1.7676 0.8576 [M:[0.6732, 0.6732], q:[0.4941, 0.4941], qb:[0.4955, 0.4927], phi:[0.3373]] 2*t^2.019 + t^2.024 + 2*t^2.96 + 2*t^2.969 + t^3.036 + 2*t^3.972 + 3*t^4.039 + 2*t^4.043 + t^4.047 + 4*t^4.98 + 4*t^4.984 + 4*t^4.988 + 4*t^4.992 + 2*t^5.055 + t^5.059 + t^5.454 + 2*t^5.458 + t^5.463 + 3*t^5.92 + 4*t^5.929 + 3*t^5.937 + 3*t^5.992 + 4*t^5.996 - 6*t^6. - t^4.012/y - t^5.024/y - t^4.012*y - t^5.024*y detail