Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57622 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4759 1.6848 0.876 [X:[1.3387], M:[0.9553, 0.6693], q:[0.4818, 0.5265], qb:[0.5182, 0.4896], phi:[0.3307]] [X:[[0, 0, 2]], M:[[-1, 1, -6], [0, 0, 1]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -3 t^2.01 + t^2.87 + t^2.91 + t^2.98 + t^3. + t^3.05 + t^3.91 + 2*t^4.02 + t^4.04 + t^4.13 + t^4.87 + t^4.9 + t^4.92 + 2*t^4.98 + t^5.01 + t^5.03 + t^5.06 + t^5.12 + t^5.46 + t^5.48 + t^5.57 + t^5.6 + t^5.73 + t^5.78 + t^5.83 + t^5.84 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.96 + t^5.98 - 3*t^6. + 3*t^6.02 + 2*t^6.05 - t^6.09 + t^6.1 + t^6.45 + t^6.48 + t^6.56 + t^6.59 + t^6.77 + t^6.82 - t^6.86 + 3*t^6.88 + 2*t^6.91 + 2*t^6.93 + 2*t^6.95 + t^6.99 + 3*t^7.02 + 3*t^7.04 + 2*t^7.06 - t^7.08 + t^7.09 + t^7.1 + t^7.13 + t^7.17 + t^7.31 + t^7.38 - t^7.44 + t^7.45 + t^7.47 + t^7.49 + t^7.55 - t^7.56 + t^7.58 + t^7.6 + t^7.64 + t^7.71 + t^7.74 + t^7.76 + t^7.79 + 2*t^7.81 + t^7.84 + t^7.85 + t^7.87 + 3*t^7.9 + 2*t^7.92 + 3*t^7.95 + 2*t^7.96 + t^7.97 + t^7.98 - 3*t^8.01 + 7*t^8.03 + 2*t^8.06 - t^8.07 + 2*t^8.08 + t^8.1 + 2*t^8.17 + t^8.25 + t^8.38 + t^8.4 - t^8.41 + 2*t^8.46 + 2*t^8.48 + 2*t^8.51 - t^8.52 + t^8.53 - t^8.55 + t^8.57 + 2*t^8.6 + t^8.62 + t^8.64 + t^8.65 - t^8.66 - t^8.68 + t^8.69 + t^8.71 + t^8.74 + t^8.76 + t^8.78 + 2*t^8.8 + t^8.82 + 2*t^8.83 - 3*t^8.87 + t^8.88 + 5*t^8.89 - 2*t^8.91 + t^8.93 + 5*t^8.94 + t^8.95 + 3*t^8.96 - 2*t^8.98 + t^8.98/y^2 - t^3.99/y - t^4.98/y - t^6./y - t^6.86/y - t^6.91/y - t^6.97/y - (2*t^6.99)/y - t^7.04/y - t^7.85/y + t^7.87/y - t^7.9/y + t^7.92/y - t^7.96/y + t^7.98/y - t^8.03/y + t^8.06/y + t^8.78/y + t^8.84/y + (2*t^8.91)/y + t^8.96/y - t^3.99*y - t^4.98*y - t^6.*y - t^6.86*y - t^6.91*y - t^6.97*y - 2*t^6.99*y - t^7.04*y - t^7.85*y + t^7.87*y - t^7.9*y + t^7.92*y - t^7.96*y + t^7.98*y - t^8.03*y + t^8.06*y + t^8.78*y + t^8.84*y + 2*t^8.91*y + t^8.96*y + t^8.98*y^2 g3*t^2.01 + (g2*t^2.87)/(g1*g3^6) + (g2*t^2.91)/g1 + t^2.98/g3^3 + t^3. + g3^6*t^3.05 + (g2*t^3.91)/(g1*g3) + 2*g3^2*t^4.02 + g3^5*t^4.04 + (g1*g3^5*t^4.13)/g2 + (g2*t^4.87)/(g1*g3^5) + (g2*t^4.9)/(g1*g3^2) + (g2*g3*t^4.92)/g1 + (2*t^4.98)/g3^2 + g3*t^5.01 + g3^4*t^5.03 + g3^7*t^5.06 + (g1*g3^4*t^5.12)/g2 + (g3^5*t^5.46)/(g1^2*g2) + (g1*g2^2*t^5.48)/g3 + (g1^2*g2*t^5.57)/g3 + (g3^11*t^5.6)/(g1*g2^2) + (g2^2*t^5.73)/(g1^2*g3^12) + (g2^2*t^5.78)/(g1^2*g3^6) + (g2^2*t^5.83)/g1^2 + (g2*t^5.84)/(g1*g3^9) + (g2*t^5.89)/(g1*g3^3) + (2*g2*t^5.91)/g1 + t^5.95/g3^6 + (g2*g3^6*t^5.96)/g1 + t^5.98/g3^3 - 3*t^6. + 3*g3^3*t^6.02 + 2*g3^6*t^6.05 - (g1*t^6.09)/g2 + g3^12*t^6.1 + (g3^4*t^6.45)/(g1^2*g2) + (g1*g2^2*t^6.48)/g3^2 + (g1^2*g2*t^6.56)/g3^2 + (g3^10*t^6.59)/(g1*g2^2) + (g2^2*t^6.77)/(g1^2*g3^7) + (g2^2*t^6.82)/(g1^2*g3) - (g2*t^6.86)/(g1*g3^7) + (3*g2*t^6.88)/(g1*g3^4) + (2*g2*t^6.91)/(g1*g3) + (2*g2*g3^2*t^6.93)/g1 + (2*g2*g3^5*t^6.95)/g1 + t^6.99/g3 + 3*g3^2*t^7.02 + 3*g3^5*t^7.04 + 2*g3^8*t^7.06 - (g1*t^7.08)/(g2*g3) + g3^11*t^7.09 + (g1*g3^2*t^7.1)/g2 + (g1*g3^5*t^7.13)/g2 + (g1*g3^11*t^7.17)/g2 + t^7.31/(g1^3*g3^3) + (g2^3*t^7.38)/g3^3 - (g1*g2^2*t^7.44)/g3^6 + (g3^3*t^7.45)/(g1^2*g2) + (g1*g2^2*t^7.47)/g3^3 + g1*g2^2*t^7.49 + (g1^2*g2*t^7.55)/g3^3 - (g3^6*t^7.56)/(g1*g2^2) + (g3^9*t^7.58)/(g1*g2^2) + (g3^12*t^7.6)/(g1*g2^2) + (g1^3*t^7.64)/g3^3 + (g3^15*t^7.71)/g2^3 + (g2^2*t^7.74)/(g1^2*g3^11) + (g2^2*t^7.76)/(g1^2*g3^8) + (g2^2*t^7.79)/(g1^2*g3^5) + (2*g2^2*t^7.81)/(g1^2*g3^2) + (g2^2*g3*t^7.84)/g1^2 + (g2*t^7.85)/(g1*g3^8) + (g2*t^7.87)/(g1*g3^5) + (3*g2*t^7.9)/(g1*g3^2) + (2*g2*g3*t^7.92)/g1 + (3*g2*g3^4*t^7.95)/g1 + (2*t^7.96)/g3^5 + (g2*g3^7*t^7.97)/g1 + t^7.98/g3^2 - 3*g3*t^8.01 + 7*g3^4*t^8.03 + 2*g3^7*t^8.06 - (g1*t^8.07)/(g2*g3^2) + 2*g3^10*t^8.08 + g3^13*t^8.1 + (2*g1*g3^10*t^8.17)/g2 + (g1^2*g3^10*t^8.25)/g2^2 + (g3^5*t^8.38)/g1^3 + (g2^3*t^8.4)/g3 - t^8.41/(g1^2*g2*g3) - (g1*g2^2*t^8.44)/g3^7 + (g3^2*t^8.44)/(g1^2*g2) + (g1*g2^2*t^8.46)/g3^4 + (g3^5*t^8.46)/(g1^2*g2) + (2*g1*g2^2*t^8.48)/g3 + (2*g3^11*t^8.51)/(g1^2*g2) - (g1^2*g2*t^8.52)/g3^7 + g1*g2^2*g3^5*t^8.53 + (g1^2*g2*t^8.55)/g3^4 - (2*g3^5*t^8.55)/(g1*g2^2) + (g3^8*t^8.57)/(g1*g2^2) + (g2^3*t^8.6)/(g1^3*g3^18) + (g3^11*t^8.6)/(g1*g2^2) + g1^2*g2*g3^5*t^8.62 + (g3^17*t^8.64)/(g1*g2^2) + (g2^3*t^8.65)/(g1^3*g3^12) - (g1^3*t^8.66)/g3 - (g3^11*t^8.68)/g2^3 + (g2^3*t^8.69)/(g1^3*g3^6) + (g2^2*t^8.71)/(g1^2*g3^15) + (g2^3*t^8.74)/g1^3 + (g2^2*t^8.76)/(g1^2*g3^9) + (g2^2*t^8.78)/(g1^2*g3^6) + (2*g2^2*t^8.8)/(g1^2*g3^3) + (g2*t^8.82)/(g1*g3^12) + (2*g2^2*t^8.83)/g1^2 - (3*g2*t^8.87)/(g1*g3^6) + (g2^2*g3^6*t^8.88)/g1^2 + (5*g2*t^8.89)/(g1*g3^3) - (2*g2*t^8.91)/g1 + t^8.93/g3^9 + (5*g2*g3^3*t^8.94)/g1 + t^8.95/g3^6 + (3*g2*g3^6*t^8.96)/g1 - (2*t^8.98)/g3^3 + t^8.98/(g3^3*y^2) - t^3.99/(g3*y) - t^4.98/(g3^2*y) - t^6./y - (g2*t^6.86)/(g1*g3^7*y) - (g2*t^6.91)/(g1*g3*y) - t^6.97/(g3^4*y) - (2*t^6.99)/(g3*y) - (g3^5*t^7.04)/y - (g2*t^7.85)/(g1*g3^8*y) + (g2*t^7.87)/(g1*g3^5*y) - (g2*t^7.9)/(g1*g3^2*y) + (g2*g3*t^7.92)/(g1*y) - t^7.96/(g3^5*y) + t^7.98/(g3^2*y) - (g3^4*t^8.03)/y + (g3^7*t^8.06)/y + (g2^2*t^8.78)/(g1^2*g3^6*y) + (g2*t^8.84)/(g1*g3^9*y) + (2*g2*t^8.91)/(g1*y) + (g2*g3^6*t^8.96)/(g1*y) - (t^3.99*y)/g3 - (t^4.98*y)/g3^2 - t^6.*y - (g2*t^6.86*y)/(g1*g3^7) - (g2*t^6.91*y)/(g1*g3) - (t^6.97*y)/g3^4 - (2*t^6.99*y)/g3 - g3^5*t^7.04*y - (g2*t^7.85*y)/(g1*g3^8) + (g2*t^7.87*y)/(g1*g3^5) - (g2*t^7.9*y)/(g1*g3^2) + (g2*g3*t^7.92*y)/g1 - (t^7.96*y)/g3^5 + (t^7.98*y)/g3^2 - g3^4*t^8.03*y + g3^7*t^8.06*y + (g2^2*t^8.78*y)/(g1^2*g3^6) + (g2*t^8.84*y)/(g1*g3^9) + (2*g2*t^8.91*y)/g1 + (g2*g3^6*t^8.96*y)/g1 + (t^8.98*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58882 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4741 1.6808 0.877 [X:[1.3387], M:[0.992, 0.6693], q:[0.5, 0.508], qb:[0.5, 0.508], phi:[0.3307]] t^2.01 + 2*t^2.98 + t^3. + t^3.02 + t^3.05 + 4*t^4.02 + t^4.04 + 3*t^4.98 + 3*t^5.01 + 2*t^5.03 + t^5.06 + 2*t^5.52 + 2*t^5.54 + 3*t^5.95 - t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y detail
58564 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4965 1.7241 0.868 [X:[1.3397], M:[0.959, 0.6699, 0.6917], q:[0.4844, 0.5254], qb:[0.5156, 0.4937], phi:[0.3301]] t^2.01 + t^2.08 + t^2.88 + t^2.93 + t^2.97 + t^3. + t^3.06 + 2*t^4.02 + t^4.05 + t^4.08 + t^4.11 + t^4.15 + t^4.89 + t^4.92 + t^4.94 + t^4.95 + 2*t^4.98 + 2*t^5.01 + t^5.04 + t^5.05 + t^5.07 + t^5.08 + t^5.1 + t^5.13 + t^5.47 + t^5.5 + t^5.56 + t^5.6 + t^5.75 + t^5.81 + t^5.85 + t^5.87 + t^5.91 + t^5.93 + t^5.94 + t^5.97 + t^5.99 - 3*t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y detail
59498 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4757 1.6805 0.8781 [X:[1.3495], M:[0.9757, 0.6748, 0.9757], q:[0.5, 0.5243], qb:[0.5, 0.5243], phi:[0.3252]] t^2.02 + 3*t^2.93 + t^3. + t^3.15 + 4*t^4.05 + t^4.12 + 4*t^4.95 + 3*t^5.02 + t^5.1 + t^5.17 + 2*t^5.55 + 2*t^5.62 + 6*t^5.85 + t^5.93 - 3*t^6. - t^3.98/y - t^4.95/y - t^6./y - t^3.98*y - t^4.95*y - t^6.*y detail
60187 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.466 1.6664 0.8797 [X:[1.361], M:[0.9469, 0.6805], q:[0.4598, 0.513], qb:[0.5402, 0.5702], phi:[0.3195]] t^2.04 + t^2.84 + t^2.88 + t^3. + t^3.09 + t^3.25 + t^4.05 + 2*t^4.08 + t^4.12 + t^4.21 + t^4.88 + 2*t^4.92 + t^5.01 + t^5.04 + t^5.08 + t^5.13 + t^5.17 + t^5.26 + t^5.29 + t^5.42 + t^5.68 + t^5.72 + t^5.75 + t^5.88 + t^5.93 + t^5.97 - 2*t^6. - t^3.96/y - t^4.92/y - t^6./y - t^3.96*y - t^4.92*y - t^6.*y detail
60086 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4661 1.6735 0.8761 [X:[1.3486], M:[0.9162, 0.6743], q:[0.4292, 0.513], qb:[0.5708, 0.5327], phi:[0.3257]] t^2.02 + t^2.75 + t^2.89 + t^2.93 + t^3. + t^3.14 + t^3.86 + 2*t^4.05 + t^4.11 + t^4.23 + t^4.77 + t^4.84 + t^4.91 + 2*t^4.95 + t^5.02 + 2*t^5.09 + t^5.16 + t^5.21 + t^5.34 + t^5.5 + t^5.63 + t^5.68 + t^5.77 + t^5.82 + t^5.86 + 3*t^5.89 + t^5.93 - 2*t^6. - t^3.98/y - t^4.95/y - t^6./y - t^3.98*y - t^4.95*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47930 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.455 1.6433 0.8854 [X:[1.3388], M:[0.9552], q:[0.4818, 0.5266], qb:[0.5182, 0.4896], phi:[0.3306]] t^2.866 + t^2.914 + t^2.976 + t^3. + t^3.049 + t^3.906 + t^3.992 + t^4.016 + t^4.041 + t^4.126 + t^4.898 + t^4.984 + t^5.033 + t^5.118 + t^5.463 + t^5.484 + t^5.57 + t^5.597 + t^5.731 + t^5.78 + t^5.829 + t^5.841 + t^5.89 + t^5.914 + t^5.951 + t^5.963 + t^5.976 - 3*t^6. - t^3.992/y - t^4.984/y - t^3.992*y - t^4.984*y detail