Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57619 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.455 1.6468 0.8836 [X:[1.3281], M:[0.9714, 0.9922], q:[0.4816, 0.5103], qb:[0.5184, 0.4741], phi:[0.3359]] [X:[[0, 0, 2]], M:[[-1, 1, -6], [0, 0, 3]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ ${}$ -3 t^2.87 + t^2.91 + t^2.95 + t^2.98 + t^3. + t^3.87 + t^3.96 + t^3.98 + t^4.01 + t^4.09 + t^4.88 + t^4.97 + t^5.02 + t^5.1 + t^5.41 + t^5.43 + t^5.51 + t^5.54 + t^5.73 + t^5.78 + t^5.82 + t^5.83 + t^5.84 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + 2*t^5.95 + t^5.98 - 3*t^6. - t^6.09 - t^6.13 + t^6.42 + t^6.44 + t^6.52 + t^6.55 + t^6.74 + t^6.79 + 2*t^6.83 + 2*t^6.85 + 2*t^6.87 + t^6.9 + t^6.91 + 2*t^6.94 + 4*t^6.96 + 2*t^6.98 - t^7.01 + t^7.05 + t^7.07 - t^7.14 + t^7.29 + t^7.36 + t^7.44 - t^7.45 - t^7.55 + t^7.56 + t^7.62 + t^7.69 + 2*t^7.75 + t^7.8 + 3*t^7.84 + t^7.86 + 3*t^7.88 + 2*t^7.92 + t^7.95 + 5*t^7.97 + t^7.99 + t^8.02 + 2*t^8.05 + t^8.08 + t^8.1 - t^8.15 + t^8.19 + t^8.27 + t^8.3 + t^8.36 + 3*t^8.38 + t^8.4 + t^8.41 - t^8.45 + t^8.47 - t^8.48 + 2*t^8.49 + t^8.52 - t^8.54 - 2*t^8.56 - t^8.59 + t^8.6 - t^8.67 + t^8.69 + t^8.7 + t^8.71 + t^8.73 + t^8.74 + 2*t^8.76 + t^8.77 + 2*t^8.8 + 2*t^8.82 + 3*t^8.84 + t^8.86 - 3*t^8.87 + t^8.88 + 2*t^8.89 - t^8.91 + 3*t^8.93 - 3*t^8.95 - t^4.01/y - t^5.02/y - t^6.87/y - t^6.92/y - t^6.96/y - t^6.98/y - t^7.01/y - t^7.88/y - t^7.93/y - t^7.97/y - t^7.99/y - t^8.02/y + t^8.78/y + t^8.82/y + t^8.84/y + (2*t^8.87)/y + t^8.91/y + t^8.93/y + t^8.95/y - t^4.01*y - t^5.02*y - t^6.87*y - t^6.92*y - t^6.96*y - t^6.98*y - t^7.01*y - t^7.88*y - t^7.93*y - t^7.97*y - t^7.99*y - t^8.02*y + t^8.78*y + t^8.82*y + t^8.84*y + 2*t^8.87*y + t^8.91*y + t^8.93*y + t^8.95*y (g2*t^2.87)/g1 + (g2*t^2.91)/(g1*g3^6) + g3^6*t^2.95 + g3^3*t^2.98 + t^3. + (g2*t^3.87)/(g1*g3) + g3^5*t^3.96 + g3^2*t^3.98 + t^4.01/g3 + (g1*g3^5*t^4.09)/g2 + (g2*t^4.88)/(g1*g3^2) + g3^4*t^4.97 + t^5.02/g3^2 + (g1*g3^4*t^5.1)/g2 + (g1*g2^2*t^5.41)/g3 + (g3^5*t^5.43)/(g1^2*g2) + (g3^11*t^5.51)/(g1*g2^2) + (g1^2*g2*t^5.54)/g3 + (g2^2*t^5.73)/g1^2 + (g2^2*t^5.78)/(g1^2*g3^6) + (g2*g3^6*t^5.82)/g1 + (g2^2*t^5.83)/(g1^2*g3^12) + (g2*g3^3*t^5.84)/g1 + (g2*t^5.87)/g1 + (g2*t^5.89)/(g1*g3^3) + g3^12*t^5.91 + g3^9*t^5.93 + 2*g3^6*t^5.95 + g3^3*t^5.98 - 3*t^6. - (g1*g3^6*t^6.09)/g2 - (g1*t^6.13)/g2 + (g1*g2^2*t^6.42)/g3^2 + (g3^4*t^6.44)/(g1^2*g2) + (g3^10*t^6.52)/(g1*g2^2) + (g1^2*g2*t^6.55)/g3^2 + (g2^2*t^6.74)/(g1^2*g3) + (g2^2*t^6.79)/(g1^2*g3^7) + (2*g2*g3^5*t^6.83)/g1 + (2*g2*g3^2*t^6.85)/g1 + (2*g2*t^6.87)/(g1*g3) + (g2*t^6.9)/(g1*g3^4) + g3^11*t^6.91 + 2*g3^8*t^6.94 + 4*g3^5*t^6.96 + 2*g3^2*t^6.98 - t^7.01/g3 + (g1*g3^11*t^7.05)/g2 + (g1*g3^8*t^7.07)/g2 - (g1*t^7.14)/(g2*g3) + (g2^3*t^7.29)/g3^3 + t^7.36/(g1^3*g3^3) + (g1*g2^2*t^7.42)/g3^3 - (g3^6*t^7.42)/(g1^2*g2) + (g3^3*t^7.44)/(g1^2*g2) - (g1*g2^2*t^7.45)/g3^6 - g1^2*g2*t^7.53 + (g3^9*t^7.53)/(g1*g2^2) - (g3^6*t^7.55)/(g1*g2^2) + (g1^2*g2*t^7.56)/g3^3 + (g3^15*t^7.62)/g2^3 + (g1^3*t^7.69)/g3^3 + (2*g2^2*t^7.75)/(g1^2*g3^2) + (g2^2*t^7.8)/(g1^2*g3^8) + (3*g2*g3^4*t^7.84)/g1 + (g2*g3*t^7.86)/g1 + (3*g2*t^7.88)/(g1*g3^2) + 2*g3^10*t^7.92 + g3^7*t^7.95 + 5*g3^4*t^7.97 + g3*t^7.99 + t^8.02/g3^2 + (2*g1*g3^10*t^8.05)/g2 + (g1*g3^7*t^8.08)/g2 + (g1*g3^4*t^8.1)/g2 - (g1*t^8.15)/(g2*g3^2) + (g1^2*g3^10*t^8.19)/g2^2 + (g2^3*t^8.27)/g3 + (g3^5*t^8.3)/g1^3 + g1*g2^2*g3^5*t^8.36 + g1*g2^2*g3^2*t^8.38 + (2*g3^11*t^8.38)/(g1^2*g2) + (g3^8*t^8.4)/(g1^2*g2) + (g1*g2^2*t^8.41)/g3 - (g1*g2^2*t^8.45)/g3^7 + (g3^17*t^8.47)/(g1*g2^2) - t^8.48/(g1^2*g2*g3) + g1^2*g2*g3^5*t^8.49 + (g3^14*t^8.49)/(g1*g2^2) + g1^2*g2*g3^2*t^8.52 - (g1^2*g2*t^8.54)/g3 - (2*g3^5*t^8.56)/(g1*g2^2) - (g1^2*g2*t^8.59)/g3^7 + (g2^3*t^8.6)/g1^3 + (g2^3*t^8.65)/(g1^3*g3^6) - (g3^11*t^8.65)/g2^3 - (g1^3*t^8.67)/g3 + (g2^2*g3^6*t^8.69)/g1^2 + (g2^3*t^8.7)/(g1^3*g3^12) + (g2^2*g3^3*t^8.71)/g1^2 + (g2^2*t^8.73)/g1^2 + (g2^3*t^8.74)/(g1^3*g3^18) + (2*g2^2*t^8.76)/(g1^2*g3^3) + (g2*g3^12*t^8.77)/g1 + (g2^2*t^8.8)/(g1^2*g3^9) + (g2*g3^9*t^8.8)/g1 + (2*g2*g3^6*t^8.82)/g1 + (3*g2*g3^3*t^8.84)/g1 + g3^18*t^8.86 - (3*g2*t^8.87)/g1 + g3^15*t^8.88 + (2*g2*t^8.89)/(g1*g3^3) - (3*g2*t^8.91)/(g1*g3^6) + 2*g3^12*t^8.91 + 3*g3^9*t^8.93 - 3*g3^6*t^8.95 - t^4.01/(g3*y) - t^5.02/(g3^2*y) - (g2*t^6.87)/(g1*g3*y) - (g2*t^6.92)/(g1*g3^7*y) - (g3^5*t^6.96)/y - (g3^2*t^6.98)/y - t^7.01/(g3*y) - (g2*t^7.88)/(g1*g3^2*y) - (g2*t^7.93)/(g1*g3^8*y) - (g3^4*t^7.97)/y - (g3*t^7.99)/y - t^8.02/(g3^2*y) + (g2^2*t^8.78)/(g1^2*g3^6*y) + (g2*g3^6*t^8.82)/(g1*y) + (g2*g3^3*t^8.84)/(g1*y) + (2*g2*t^8.87)/(g1*y) + (g2*t^8.91)/(g1*g3^6*y) + (g3^9*t^8.93)/y + (g3^6*t^8.95)/y - (t^4.01*y)/g3 - (t^5.02*y)/g3^2 - (g2*t^6.87*y)/(g1*g3) - (g2*t^6.92*y)/(g1*g3^7) - g3^5*t^6.96*y - g3^2*t^6.98*y - (t^7.01*y)/g3 - (g2*t^7.88*y)/(g1*g3^2) - (g2*t^7.93*y)/(g1*g3^8) - g3^4*t^7.97*y - g3*t^7.99*y - (t^8.02*y)/g3^2 + (g2^2*t^8.78*y)/(g1^2*g3^6) + (g2*g3^6*t^8.82*y)/g1 + (g2*g3^3*t^8.84*y)/g1 + (2*g2*t^8.87*y)/g1 + (g2*t^8.91*y)/(g1*g3^6) + g3^9*t^8.93*y + g3^6*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60481 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4758 1.6873 0.8746 [X:[1.3292], M:[0.9697, 0.9938, 0.677], q:[0.4816, 0.5119], qb:[0.5184, 0.4756], phi:[0.3354]] t^2.03 + t^2.87 + t^2.91 + t^2.96 + t^2.98 + t^3. + t^3.88 + t^3.99 + t^4.01 + t^4.06 + t^4.1 + t^4.88 + t^4.9 + t^4.94 + t^4.98 + t^4.99 + 2*t^5.01 + t^5.03 + t^5.1 + t^5.42 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail
58936 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4533 1.6393 0.8865 [X:[1.3387], M:[0.9919, 1.0081, 0.9919], q:[0.5, 0.5081], qb:[0.5, 0.5081], phi:[0.3306]] 2*t^2.98 + t^3. + t^3.02 + t^3.05 + t^3.99 + 3*t^4.02 + t^4.04 + t^4.98 + 2*t^5.01 + t^5.03 + 2*t^5.52 + 2*t^5.54 + 3*t^5.95 - t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail
59493 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.4465 1.6315 0.8866 [X:[1.3497], M:[0.9172, 1.0245], q:[0.5031, 0.5859], qb:[0.4969, 0.4632], phi:[0.3252]] t^2.75 + t^2.9 + t^3. + t^3.07 + t^3.15 + t^3.87 + t^3.98 + t^4.05 + t^4.12 + t^4.22 + t^4.85 + t^4.95 + t^5.1 + t^5.2 + t^5.25 + t^5.35 + t^5.5 + t^5.65 + t^5.75 + t^5.8 + t^5.83 + t^5.9 + t^5.97 - 2*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47930 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.455 1.6433 0.8854 [X:[1.3388], M:[0.9552], q:[0.4818, 0.5266], qb:[0.5182, 0.4896], phi:[0.3306]] t^2.866 + t^2.914 + t^2.976 + t^3. + t^3.049 + t^3.906 + t^3.992 + t^4.016 + t^4.041 + t^4.126 + t^4.898 + t^4.984 + t^5.033 + t^5.118 + t^5.463 + t^5.484 + t^5.57 + t^5.597 + t^5.731 + t^5.78 + t^5.829 + t^5.841 + t^5.89 + t^5.914 + t^5.951 + t^5.963 + t^5.976 - 3*t^6. - t^3.992/y - t^4.984/y - t^3.992*y - t^4.984*y detail