Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57363 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ 1.4548 1.6497 0.8819 [M:[0.9764, 1.3176], q:[0.5, 0.4764], qb:[0.5, 0.4764], phi:[0.3412]] [M:[[3, 0, 3], [2, 0, 2]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$ ${}$ -3 t^2.858 + 3*t^2.929 + t^3. + t^3.882 + 3*t^3.953 + t^4.024 + t^4.905 + 2*t^4.976 + t^5.047 + 2*t^5.382 + 2*t^5.453 + t^5.716 + 3*t^5.787 + 7*t^5.858 + t^5.929 - 3*t^6. - 2*t^6.071 + 2*t^6.405 + 2*t^6.476 + t^6.74 + 6*t^6.811 + 11*t^6.882 + 4*t^6.953 - 2*t^7.024 - 2*t^7.095 + 2*t^7.358 + 2*t^7.571 + 2*t^7.764 + 7*t^7.835 + 12*t^7.905 + 5*t^7.976 - 2*t^8.118 + 2*t^8.24 + 8*t^8.311 + 6*t^8.382 - 4*t^8.453 - 6*t^8.524 + t^8.575 - 2*t^8.595 + 3*t^8.646 + 7*t^8.716 + 12*t^8.787 + t^8.858 - 8*t^8.929 - t^4.024/y - t^5.047/y - t^6.882/y - (3*t^6.953)/y - t^7.024/y - t^7.905/y - (3*t^7.976)/y - t^8.047/y + (3*t^8.787)/y + (4*t^8.858)/y + (2*t^8.929)/y - t^4.024*y - t^5.047*y - t^6.882*y - 3*t^6.953*y - t^7.024*y - t^7.905*y - 3*t^7.976*y - t^8.047*y + 3*t^8.787*y + 4*t^8.858*y + 2*t^8.929*y g1^6*g3^6*t^2.858 + g1^6*g2*t^2.929 + g1^3*g3^3*t^2.929 + (g3^6*t^2.929)/g2 + t^3. + g1^5*g3^5*t^3.882 + (g1^5*g2*t^3.953)/g3 + g1^2*g3^2*t^3.953 + (g3^5*t^3.953)/(g1*g2) + t^4.024/(g1*g3) + g1^4*g3^4*t^4.905 + (g1^4*g2*t^4.976)/g3^2 + (g3^4*t^4.976)/(g1^2*g2) + t^5.047/(g1^2*g3^2) + (g1^11*t^5.382)/(g2*g3) + (g2*g3^11*t^5.382)/g1 + (g1^5*t^5.453)/(g2^2*g3) + (g2^2*g3^5*t^5.453)/g1 + g1^12*g3^12*t^5.716 + g1^12*g2*g3^6*t^5.787 + g1^9*g3^9*t^5.787 + (g1^6*g3^12*t^5.787)/g2 + g1^12*g2^2*t^5.858 + g1^9*g2*g3^3*t^5.858 + 3*g1^6*g3^6*t^5.858 + (g1^3*g3^9*t^5.858)/g2 + (g3^12*t^5.858)/g2^2 + g1^3*g3^3*t^5.929 - 3*t^6. - t^6.071/(g1^6*g2) - (g2*t^6.071)/g3^6 + (g1^10*t^6.405)/(g2*g3^2) + (g2*g3^10*t^6.405)/g1^2 + (g1^4*t^6.476)/(g2^2*g3^2) + (g2^2*g3^4*t^6.476)/g1^2 + g1^11*g3^11*t^6.74 + 2*g1^11*g2*g3^5*t^6.811 + 2*g1^8*g3^8*t^6.811 + (2*g1^5*g3^11*t^6.811)/g2 + (g1^11*g2^2*t^6.882)/g3 + 2*g1^8*g2*g3^2*t^6.882 + 5*g1^5*g3^5*t^6.882 + (2*g1^2*g3^8*t^6.882)/g2 + (g3^11*t^6.882)/(g1*g2^2) + (g1^5*g2*t^6.953)/g3 + 2*g1^2*g3^2*t^6.953 + (g3^5*t^6.953)/(g1*g2) - (2*t^7.024)/(g1*g3) - (g2*t^7.095)/(g1*g3^7) - t^7.095/(g1^7*g2*g3) + (g1^15*t^7.358)/g3^3 + (g3^15*t^7.358)/g1^3 - (g1^6*t^7.429)/g2^2 + (g1^9*t^7.429)/(g2*g3^3) - g2^2*g3^6*t^7.429 + (g2*g3^9*t^7.429)/g1^3 - (g1^6*t^7.5)/(g2*g3^6) + (g1^3*t^7.5)/(g2^2*g3^3) + (g2^2*g3^3*t^7.5)/g1^3 - (g2*g3^6*t^7.5)/g1^6 + t^7.571/(g1^3*g2^3*g3^3) + (g2^3*t^7.571)/(g1^3*g3^3) + 2*g1^10*g3^10*t^7.764 + 3*g1^10*g2*g3^4*t^7.835 + g1^7*g3^7*t^7.835 + (3*g1^4*g3^10*t^7.835)/g2 + (2*g1^10*g2^2*t^7.905)/g3^2 + g1^7*g2*g3*t^7.905 + 6*g1^4*g3^4*t^7.905 + (g1*g3^7*t^7.905)/g2 + (2*g3^10*t^7.905)/(g1^2*g2^2) + (2*g1^4*g2*t^7.976)/g3^2 + g1*g3*t^7.976 + (2*g3^4*t^7.976)/(g1^2*g2) - (g2*t^8.118)/(g1^2*g3^8) - t^8.118/(g1^8*g2*g3^2) + (g1^17*g3^5*t^8.24)/g2 + g1^5*g2*g3^17*t^8.24 + (g1^17*t^8.311)/g3 + (g1^14*g3^2*t^8.311)/g2 + (2*g1^11*g3^5*t^8.311)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.311 + g1^2*g2*g3^14*t^8.311 + (g3^17*t^8.311)/g1 + (g1^11*t^8.382)/(g2*g3) + (g1^8*g3^2*t^8.382)/g2^2 + (g1^5*g3^5*t^8.382)/g2^3 + g1^5*g2^3*g3^5*t^8.382 + g1^2*g2^2*g3^8*t^8.382 + (g2*g3^11*t^8.382)/g1 - (g1^11*t^8.453)/g3^7 - (g1^5*t^8.453)/(g2^2*g3) - (g2^2*g3^5*t^8.453)/g1 - (g3^11*t^8.453)/g1^7 - (2*g1^5*t^8.524)/(g2*g3^7) - t^8.524/(g1*g2^3*g3) - (g2^3*t^8.524)/(g1*g3) - (2*g2*g3^5*t^8.524)/g1^7 + g1^18*g3^18*t^8.575 - t^8.595/(g1*g2^2*g3^7) - (g2^2*t^8.595)/(g1^7*g3) + g1^18*g2*g3^12*t^8.646 + g1^15*g3^15*t^8.646 + (g1^12*g3^18*t^8.646)/g2 + g1^18*g2^2*g3^6*t^8.716 + g1^15*g2*g3^9*t^8.716 + 3*g1^12*g3^12*t^8.716 + (g1^9*g3^15*t^8.716)/g2 + (g1^6*g3^18*t^8.716)/g2^2 + g1^18*g2^3*t^8.787 + g1^15*g2^2*g3^3*t^8.787 + 2*g1^12*g2*g3^6*t^8.787 + 4*g1^9*g3^9*t^8.787 + (2*g1^6*g3^12*t^8.787)/g2 + (g1^3*g3^15*t^8.787)/g2^2 + (g3^18*t^8.787)/g2^3 + 2*g1^9*g2*g3^3*t^8.858 - 3*g1^6*g3^6*t^8.858 + (2*g1^3*g3^9*t^8.858)/g2 - 5*g1^6*g2*t^8.929 + (g1^9*g2^2*t^8.929)/g3^3 - (5*g3^6*t^8.929)/g2 + (g3^9*t^8.929)/(g1^3*g2^2) - t^4.024/(g1*g3*y) - t^5.047/(g1^2*g3^2*y) - (g1^5*g3^5*t^6.882)/y - (g1^5*g2*t^6.953)/(g3*y) - (g1^2*g3^2*t^6.953)/y - (g3^5*t^6.953)/(g1*g2*y) - t^7.024/(g1*g3*y) - (g1^4*g3^4*t^7.905)/y - (g1^4*g2*t^7.976)/(g3^2*y) - (g1*g3*t^7.976)/y - (g3^4*t^7.976)/(g1^2*g2*y) - t^8.047/(g1^2*g3^2*y) + (g1^12*g2*g3^6*t^8.787)/y + (g1^9*g3^9*t^8.787)/y + (g1^6*g3^12*t^8.787)/(g2*y) + (g1^9*g2*g3^3*t^8.858)/y + (2*g1^6*g3^6*t^8.858)/y + (g1^3*g3^9*t^8.858)/(g2*y) + (g1^6*g2*t^8.929)/y + (g3^6*t^8.929)/(g2*y) - (t^4.024*y)/(g1*g3) - (t^5.047*y)/(g1^2*g3^2) - g1^5*g3^5*t^6.882*y - (g1^5*g2*t^6.953*y)/g3 - g1^2*g3^2*t^6.953*y - (g3^5*t^6.953*y)/(g1*g2) - (t^7.024*y)/(g1*g3) - g1^4*g3^4*t^7.905*y - (g1^4*g2*t^7.976*y)/g3^2 - g1*g3*t^7.976*y - (g3^4*t^7.976*y)/(g1^2*g2) - (t^8.047*y)/(g1^2*g3^2) + g1^12*g2*g3^6*t^8.787*y + g1^9*g3^9*t^8.787*y + (g1^6*g3^12*t^8.787*y)/g2 + g1^9*g2*g3^3*t^8.858*y + 2*g1^6*g3^6*t^8.858*y + (g1^3*g3^9*t^8.858*y)/g2 + g1^6*g2*t^8.929*y + (g3^6*t^8.929*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47894 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4561 1.6566 0.8789 [M:[0.9583, 1.3055], q:[0.4791, 0.4791], qb:[0.4791, 0.4791], phi:[0.3472]] 5*t^2.875 + 5*t^3.917 + 4*t^4.958 + 4*t^5.354 + 15*t^5.75 - 8*t^6. - t^4.042/y - t^5.083/y - t^4.042*y - t^5.083*y detail