Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57364 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ 1.4543 1.647 0.883 [M:[0.9835, 1.3223], q:[0.4916, 0.4916], qb:[0.5084, 0.4753], phi:[0.3388]] [M:[[0, -3, 3], [0, -2, 2]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$ ${}$ -3 2*t^2.901 + t^2.95 + 2*t^3. + 2*t^3.917 + t^3.967 + 2*t^4.017 + 2*t^4.934 + 2*t^5.033 + t^5.394 + 2*t^5.441 + t^5.493 + 3*t^5.802 + 2*t^5.851 + 4*t^5.901 + 2*t^5.95 - 3*t^6. - t^6.099 + t^6.41 + 2*t^6.457 + t^6.509 + 4*t^6.818 + 4*t^6.868 + 8*t^6.917 + 4*t^6.967 - t^7.017 - t^7.116 + t^7.328 - t^7.424 + t^7.427 + 4*t^7.474 - 2*t^7.476 - t^7.524 + t^7.526 + t^7.625 + 7*t^7.835 + 2*t^7.884 + 11*t^7.934 + 2*t^7.983 + 3*t^8.033 - t^8.132 + 2*t^8.294 + 4*t^8.342 + t^8.344 + 2*t^8.391 + 2*t^8.394 + t^8.443 - 2*t^8.493 - 4*t^8.54 - 2*t^8.592 + 4*t^8.702 + 3*t^8.752 + 6*t^8.802 + 8*t^8.851 - 6*t^8.901 + 4*t^8.95 - t^4.017/y - t^5.033/y - (2*t^6.917)/y - t^6.967/y - (2*t^7.017)/y - (2*t^7.934)/y - t^7.983/y - (2*t^8.033)/y + t^8.802/y + (2*t^8.851)/y + (4*t^8.901)/y - t^4.017*y - t^5.033*y - 2*t^6.917*y - t^6.967*y - 2*t^7.017*y - 2*t^7.934*y - t^7.983*y - 2*t^8.033*y + t^8.802*y + 2*t^8.851*y + 4*t^8.901*y g1*g3^6*t^2.901 + (g3^6*t^2.901)/(g1*g2^12) + (g3^3*t^2.95)/g2^3 + t^3./(g1*g2^6) + g1*g2^6*t^3. + (g3^5*t^3.917)/(g1*g2^11) + g1*g2*g3^5*t^3.917 + (g3^2*t^3.967)/g2^2 + t^4.017/(g1*g2^5*g3) + (g1*g2^7*t^4.017)/g3 + (g3^4*t^4.934)/(g1*g2^10) + g1*g2^2*g3^4*t^4.934 + t^5.033/(g1*g2^4*g3^2) + (g1*g2^8*t^5.033)/g3^2 + g2^7*g3^11*t^5.394 + t^5.441/(g1*g2^23*g3) + (g1*t^5.441)/(g2^11*g3) + g2^13*g3^5*t^5.493 + g1^2*g3^12*t^5.802 + (g3^12*t^5.802)/(g1^2*g2^24) + (g3^12*t^5.802)/g2^12 + (g3^9*t^5.851)/(g1*g2^15) + (g1*g3^9*t^5.851)/g2^3 + (g3^6*t^5.901)/(g1^2*g2^18) + (2*g3^6*t^5.901)/g2^6 + g1^2*g2^6*g3^6*t^5.901 + (g3^3*t^5.95)/(g1*g2^9) + g1*g2^3*g3^3*t^5.95 - 3*t^6. - (g2^6*t^6.099)/g3^6 + g2^8*g3^10*t^6.41 + t^6.457/(g1*g2^22*g3^2) + (g1*t^6.457)/(g2^10*g3^2) + g2^14*g3^4*t^6.509 + (g3^11*t^6.818)/(g1^2*g2^23) + (2*g3^11*t^6.818)/g2^11 + g1^2*g2*g3^11*t^6.818 + (2*g3^8*t^6.868)/(g1*g2^14) + (2*g1*g3^8*t^6.868)/g2^2 + (2*g3^5*t^6.917)/(g1^2*g2^17) + (4*g3^5*t^6.917)/g2^5 + 2*g1^2*g2^7*g3^5*t^6.917 + (2*g3^2*t^6.967)/(g1*g2^8) + 2*g1*g2^4*g3^2*t^6.967 - (g2*t^7.017)/g3 - (g2^7*t^7.116)/g3^7 + g2^3*g3^15*t^7.328 - t^7.424/g2^18 + g2^9*g3^9*t^7.427 + t^7.474/(g1^3*g2^33*g3^3) + t^7.474/(g1*g2^21*g3^3) + (g1*t^7.474)/(g2^9*g3^3) + (g1^3*g2^3*t^7.474)/g3^3 - (g2^6*g3^6*t^7.476)/g1 - g1*g2^18*g3^6*t^7.476 - t^7.524/(g2^12*g3^6) + g2^15*g3^3*t^7.526 + (g2^21*t^7.625)/g3^3 + (2*g3^10*t^7.835)/(g1^2*g2^22) + (3*g3^10*t^7.835)/g2^10 + 2*g1^2*g2^2*g3^10*t^7.835 + (g3^7*t^7.884)/(g1*g2^13) + (g1*g3^7*t^7.884)/g2 + (3*g3^4*t^7.934)/(g1^2*g2^16) + (5*g3^4*t^7.934)/g2^4 + 3*g1^2*g2^8*g3^4*t^7.934 + (g3*t^7.983)/(g1*g2^7) + g1*g2^5*g3*t^7.983 + t^8.033/(g1^2*g2^10*g3^2) + (g2^2*t^8.033)/g3^2 + (g1^2*g2^14*t^8.033)/g3^2 - (g2^8*t^8.132)/g3^8 + (g3^17*t^8.294)/(g1*g2^5) + g1*g2^7*g3^17*t^8.294 + (g3^5*t^8.342)/(g1^2*g2^35) + (2*g3^5*t^8.342)/g2^23 + (g1^2*g3^5*t^8.342)/g2^11 + g2^4*g3^14*t^8.344 + (g3^2*t^8.391)/(g1*g2^26) + (g1*g3^2*t^8.391)/g2^14 + (g2*g3^11*t^8.394)/g1 + g1*g2^13*g3^11*t^8.394 + g2^10*g3^8*t^8.443 - (g2^7*g3^5*t^8.493)/g1 - g1*g2^19*g3^5*t^8.493 - t^8.54/(g1^2*g2^23*g3^7) - (2*t^8.54)/(g2^11*g3^7) - (g1^2*g2*t^8.54)/g3^7 - (g2^13*t^8.592)/(g1*g3) - (g1*g2^25*t^8.592)/g3 + g1^3*g3^18*t^8.702 + (g3^18*t^8.702)/(g1^3*g2^36) + (g3^18*t^8.702)/(g1*g2^24) + (g1*g3^18*t^8.702)/g2^12 + (g3^15*t^8.752)/(g1^2*g2^27) + (g3^15*t^8.752)/g2^15 + (g1^2*g3^15*t^8.752)/g2^3 + (g3^12*t^8.802)/(g1^3*g2^30) + (2*g3^12*t^8.802)/(g1*g2^18) + (2*g1*g3^12*t^8.802)/g2^6 + g1^3*g2^6*g3^12*t^8.802 + (2*g3^9*t^8.851)/(g1^2*g2^21) + (4*g3^9*t^8.851)/g2^9 + 2*g1^2*g2^3*g3^9*t^8.851 - 3*g1*g3^6*t^8.901 - (3*g3^6*t^8.901)/(g1*g2^12) + (2*g3^3*t^8.95)/(g1^2*g2^15) + 2*g1^2*g2^9*g3^3*t^8.95 - (g2*t^4.017)/(g3*y) - (g2^2*t^5.033)/(g3^2*y) - (g3^5*t^6.917)/(g1*g2^11*y) - (g1*g2*g3^5*t^6.917)/y - (g3^2*t^6.967)/(g2^2*y) - t^7.017/(g1*g2^5*g3*y) - (g1*g2^7*t^7.017)/(g3*y) - (g3^4*t^7.934)/(g1*g2^10*y) - (g1*g2^2*g3^4*t^7.934)/y - (g3*t^7.983)/(g2*y) - t^8.033/(g1*g2^4*g3^2*y) - (g1*g2^8*t^8.033)/(g3^2*y) + (g3^12*t^8.802)/(g2^12*y) + (g3^9*t^8.851)/(g1*g2^15*y) + (g1*g3^9*t^8.851)/(g2^3*y) + (g3^6*t^8.901)/(g1^2*g2^18*y) + (2*g3^6*t^8.901)/(g2^6*y) + (g1^2*g2^6*g3^6*t^8.901)/y - (g2*t^4.017*y)/g3 - (g2^2*t^5.033*y)/g3^2 - (g3^5*t^6.917*y)/(g1*g2^11) - g1*g2*g3^5*t^6.917*y - (g3^2*t^6.967*y)/g2^2 - (t^7.017*y)/(g1*g2^5*g3) - (g1*g2^7*t^7.017*y)/g3 - (g3^4*t^7.934*y)/(g1*g2^10) - g1*g2^2*g3^4*t^7.934*y - (g3*t^7.983*y)/g2 - (t^8.033*y)/(g1*g2^4*g3^2) - (g1*g2^8*t^8.033*y)/g3^2 + (g3^12*t^8.802*y)/g2^12 + (g3^9*t^8.851*y)/(g1*g2^15) + (g1*g3^9*t^8.851*y)/g2^3 + (g3^6*t^8.901*y)/(g1^2*g2^18) + (2*g3^6*t^8.901*y)/g2^6 + g1^2*g2^6*g3^6*t^8.901*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58423 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 1.4551 1.6489 0.8825 [X:[], M:[0.9836, 1.3224, 0.9818], q:[0.51, 0.4736], qb:[0.5082, 0.4753], phi:[0.3388]] t^2.85 + 3*t^2.95 + t^2.96 + t^3.86 + t^3.96 + 2*t^3.97 + t^4.07 + t^4.88 + t^4.98 + t^4.99 + t^5.09 + 2*t^5.39 + t^5.49 + t^5.5 + t^5.69 + 2*t^5.79 + 2*t^5.8 + 2*t^5.89 + 4*t^5.9 + 2*t^5.91 - 4*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47894 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4561 1.6566 0.8789 [M:[0.9583, 1.3055], q:[0.4791, 0.4791], qb:[0.4791, 0.4791], phi:[0.3472]] 5*t^2.875 + 5*t^3.917 + 4*t^4.958 + 4*t^5.354 + 15*t^5.75 - 8*t^6. - t^4.042/y - t^5.083/y - t^4.042*y - t^5.083*y detail