Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
476 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ | 0.6898 | 0.8768 | 0.7867 | [X:[], M:[0.6887, 0.72, 0.6887, 0.6991, 0.6783, 1.28], q:[0.8252, 0.8252], qb:[0.4861, 0.4652], phi:[0.3496]] | [X:[], M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -2, -2], [0, -5, 1], [0, -1, 5]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_3$, $ M_1$, $ M_4$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_5^2$, $ M_1M_5$, $ M_3M_5$, $ M_3^2$, $ M_1^2$, $ M_1M_3$, $ M_4M_5$, $ M_5\phi_1^2$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_3M_4$, $ M_3\phi_1^2$, $ M_4^2$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5M_6$, $ M_1M_6$, $ M_5q_2\tilde{q}_2$, $ M_3M_6$, $ M_5q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_4M_6$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_2$ | . | -3 | t^2.03 + 2*t^2.07 + 2*t^2.1 + t^2.85 + t^3.84 + 2*t^3.87 + t^4.07 + 2*t^4.1 + 5*t^4.13 + 4*t^4.16 + 3*t^4.19 + t^4.89 + 2*t^4.92 + 3*t^4.95 + t^5.71 + t^5.88 + 4*t^5.91 + 5*t^5.94 + 2*t^5.97 - 3*t^6. - 2*t^6.03 - t^6.06 + t^6.1 + 2*t^6.14 + 5*t^6.17 + 8*t^6.2 + 9*t^6.23 + 6*t^6.26 + 4*t^6.29 + t^6.69 + 2*t^6.73 + t^6.92 + 2*t^6.95 + 5*t^6.99 + 4*t^7.02 + 3*t^7.05 - 2*t^7.08 - t^7.11 + t^7.68 + 2*t^7.71 + 3*t^7.74 - 2*t^7.84 - t^7.87 + t^7.91 + 4*t^7.94 + 8*t^7.97 + 10*t^8. + 2*t^8.03 - 6*t^8.07 - 10*t^8.1 - 6*t^8.13 + t^8.14 - 2*t^8.16 + 2*t^8.17 + 5*t^8.2 + 8*t^8.23 + 14*t^8.26 + 14*t^8.3 + 13*t^8.33 + 8*t^8.36 + 5*t^8.39 + t^8.56 + t^8.73 + 4*t^8.76 + 5*t^8.79 + 2*t^8.82 - 5*t^8.85 - 4*t^8.89 - 2*t^8.92 + t^8.96 + 2*t^8.99 - t^4.05/y - t^6.08/y - (2*t^6.11)/y - (2*t^6.15)/y + (2*t^7.1)/y + (3*t^7.13)/y + (4*t^7.16)/y + t^7.19/y + t^7.89/y + (2*t^7.92)/y + (4*t^7.95)/y + (2*t^7.98)/y + t^8.01/y - t^8.12/y - (2*t^8.15)/y - (5*t^8.18)/y - (4*t^8.21)/y - (3*t^8.24)/y + t^8.88/y + (4*t^8.91)/y + (6*t^8.94)/y + (4*t^8.97)/y - t^4.05*y - t^6.08*y - 2*t^6.11*y - 2*t^6.15*y + 2*t^7.1*y + 3*t^7.13*y + 4*t^7.16*y + t^7.19*y + t^7.89*y + 2*t^7.92*y + 4*t^7.95*y + 2*t^7.98*y + t^8.01*y - t^8.12*y - 2*t^8.15*y - 5*t^8.18*y - 4*t^8.21*y - 3*t^8.24*y + t^8.88*y + 4*t^8.91*y + 6*t^8.94*y + 4*t^8.97*y | (g3*t^2.03)/g2^5 + t^2.07/(g1*g2^3) + (g1*t^2.07)/(g2^4*g3) + (2*t^2.1)/(g2^2*g3^2) + g2^3*g3^3*t^2.85 + (g3^5*t^3.84)/g2 + g1*g3^3*t^3.87 + (g2*g3^4*t^3.87)/g1 + (g3^2*t^4.07)/g2^10 + (g1*t^4.1)/g2^9 + (g3*t^4.1)/(g1*g2^8) + t^4.13/(g1^2*g2^6) + (g1^2*t^4.13)/(g2^8*g3^2) + (3*t^4.13)/(g2^7*g3) + (2*g1*t^4.16)/(g2^6*g3^3) + (2*t^4.16)/(g1*g2^5*g3^2) + (3*t^4.19)/(g2^4*g3^4) + (g3^4*t^4.89)/g2^2 + (g1*g3^2*t^4.92)/g2 + (g3^3*t^4.92)/g1 + 3*g2*g3*t^4.95 + g2^6*g3^6*t^5.71 + (g3^6*t^5.88)/g2^6 + (2*g1*g3^4*t^5.91)/g2^5 + (2*g3^5*t^5.91)/(g1*g2^4) + (g1^2*g3^2*t^5.94)/g2^4 + (3*g3^3*t^5.94)/g2^3 + (g3^4*t^5.94)/(g1^2*g2^2) + (g1*g3*t^5.97)/g2^2 + (g3^2*t^5.97)/(g1*g2) - 3*t^6. - (g1*g2*t^6.03)/g3^2 - (g2^2*t^6.03)/(g1*g3) - (g2^3*t^6.06)/g3^3 + (g3^3*t^6.1)/g2^15 + (g1*g3*t^6.14)/g2^14 + (g3^2*t^6.14)/(g1*g2^13) + (3*t^6.17)/g2^12 + (g1^2*t^6.17)/(g2^13*g3) + (g3*t^6.17)/(g1^2*g2^11) + t^6.2/(g1^3*g2^9) + (g1^3*t^6.2)/(g2^12*g3^3) + (3*g1*t^6.2)/(g2^11*g3^2) + (3*t^6.2)/(g1*g2^10*g3) + (2*g1^2*t^6.23)/(g2^10*g3^4) + (5*t^6.23)/(g2^9*g3^3) + (2*t^6.23)/(g1^2*g2^8*g3^2) + (3*g1*t^6.26)/(g2^8*g3^5) + (3*t^6.26)/(g1*g2^7*g3^4) + (4*t^6.29)/(g2^6*g3^6) + g2^2*g3^8*t^6.69 + g1*g2^3*g3^6*t^6.73 + (g2^4*g3^7*t^6.73)/g1 + (g3^5*t^6.92)/g2^7 + (g1*g3^3*t^6.95)/g2^6 + (g3^4*t^6.95)/(g1*g2^5) + (g1^2*g3*t^6.99)/g2^5 + (3*g3^2*t^6.99)/g2^4 + (g3^3*t^6.99)/(g1^2*g2^3) + (2*g1*t^7.02)/g2^3 + (2*g3*t^7.02)/(g1*g2^2) + (3*t^7.05)/(g2*g3) - (g1*t^7.08)/g3^3 - (g2*t^7.08)/(g1*g3^2) - (g2^2*t^7.11)/g3^4 + (g3^10*t^7.68)/g2^2 + (g1*g3^8*t^7.71)/g2 + (g3^9*t^7.71)/g1 + g1^2*g3^6*t^7.74 + g2*g3^7*t^7.74 + (g2^2*g3^8*t^7.74)/g1^2 - g1*g2^5*g3^2*t^7.84 - (g2^6*g3^3*t^7.84)/g1 - g2^7*g3*t^7.87 + (g3^7*t^7.91)/g2^11 + (2*g1*g3^5*t^7.94)/g2^10 + (2*g3^6*t^7.94)/(g1*g2^9) + (2*g1^2*g3^3*t^7.97)/g2^9 + (4*g3^4*t^7.97)/g2^8 + (2*g3^5*t^7.97)/(g1^2*g2^7) + (g1^3*g3*t^8.)/g2^8 + (4*g1*g3^2*t^8.)/g2^7 + (4*g3^3*t^8.)/(g1*g2^6) + (g3^4*t^8.)/(g1^3*g2^5) + (g1^2*t^8.03)/g2^6 + (g3^2*t^8.03)/(g1^2*g2^4) - (3*t^8.07)/(g1*g2^3) - (3*g1*t^8.07)/(g2^4*g3) - (g1^2*t^8.1)/(g2^3*g3^3) - (8*t^8.1)/(g2^2*g3^2) - t^8.1/(g1^2*g2*g3) - (3*g1*t^8.13)/(g2*g3^4) - (3*t^8.13)/(g1*g3^3) + (g3^4*t^8.14)/g2^20 - (2*g2*t^8.16)/g3^5 + (g1*g3^2*t^8.17)/g2^19 + (g3^3*t^8.17)/(g1*g2^18) + (g1^2*t^8.2)/g2^18 + (3*g3*t^8.2)/g2^17 + (g3^2*t^8.2)/(g1^2*g2^16) + (3*t^8.23)/(g1*g2^15) + (g1^3*t^8.23)/(g2^17*g3^2) + (3*g1*t^8.23)/(g2^16*g3) + (g3*t^8.23)/(g1^3*g2^14) + t^8.26/(g1^4*g2^12) + (g1^4*t^8.26)/(g2^16*g3^4) + (3*g1^2*t^8.26)/(g2^15*g3^3) + (6*t^8.26)/(g2^14*g3^2) + (3*t^8.26)/(g1^2*g2^13*g3) + (2*g1^3*t^8.3)/(g2^14*g3^5) + (5*g1*t^8.3)/(g2^13*g3^4) + (5*t^8.3)/(g1*g2^12*g3^3) + (2*t^8.3)/(g1^3*g2^11*g3^2) + (3*g1^2*t^8.33)/(g2^12*g3^6) + (7*t^8.33)/(g2^11*g3^5) + (3*t^8.33)/(g1^2*g2^10*g3^4) + (4*g1*t^8.36)/(g2^10*g3^7) + (4*t^8.36)/(g1*g2^9*g3^6) + (5*t^8.39)/(g2^8*g3^8) + g2^9*g3^9*t^8.56 + (g3^9*t^8.73)/g2^3 + (2*g1*g3^7*t^8.76)/g2^2 + (2*g3^8*t^8.76)/(g1*g2) + (g1^2*g3^5*t^8.79)/g2 + 3*g3^6*t^8.79 + (g2*g3^7*t^8.79)/g1^2 + g1*g2*g3^4*t^8.82 + (g2^2*g3^5*t^8.82)/g1 - 5*g2^3*g3^3*t^8.85 - 2*g1*g2^4*g3*t^8.89 - (2*g2^5*g3^2*t^8.89)/g1 - 2*g2^6*t^8.92 + (g3^6*t^8.96)/g2^12 + (g1*g3^4*t^8.99)/g2^11 + (g3^5*t^8.99)/(g1*g2^10) - t^4.05/(g2*g3*y) - t^6.08/(g2^6*y) - (g1*t^6.11)/(g2^5*g3^2*y) - t^6.11/(g1*g2^4*g3*y) - (2*t^6.15)/(g2^3*g3^3*y) + (g1*t^7.1)/(g2^9*y) + (g3*t^7.1)/(g1*g2^8*y) + (3*t^7.13)/(g2^7*g3*y) + (2*g1*t^7.16)/(g2^6*g3^3*y) + (2*t^7.16)/(g1*g2^5*g3^2*y) + t^7.19/(g2^4*g3^4*y) + (g3^4*t^7.89)/(g2^2*y) + (g1*g3^2*t^7.92)/(g2*y) + (g3^3*t^7.92)/(g1*y) + (4*g2*g3*t^7.95)/y + (g2^3*t^7.98)/(g1*y) + (g1*g2^2*t^7.98)/(g3*y) + (g2^4*t^8.01)/(g3^2*y) - (g3*t^8.12)/(g2^11*y) - t^8.15/(g1*g2^9*y) - (g1*t^8.15)/(g2^10*g3*y) - (g1^2*t^8.18)/(g2^9*g3^3*y) - (3*t^8.18)/(g2^8*g3^2*y) - t^8.18/(g1^2*g2^7*g3*y) - (2*g1*t^8.21)/(g2^7*g3^4*y) - (2*t^8.21)/(g1*g2^6*g3^3*y) - (3*t^8.24)/(g2^5*g3^5*y) + (g3^6*t^8.88)/(g2^6*y) + (2*g1*g3^4*t^8.91)/(g2^5*y) + (2*g3^5*t^8.91)/(g1*g2^4*y) + (g1^2*g3^2*t^8.94)/(g2^4*y) + (4*g3^3*t^8.94)/(g2^3*y) + (g3^4*t^8.94)/(g1^2*g2^2*y) + (2*g1*g3*t^8.97)/(g2^2*y) + (2*g3^2*t^8.97)/(g1*g2*y) - (t^4.05*y)/(g2*g3) - (t^6.08*y)/g2^6 - (g1*t^6.11*y)/(g2^5*g3^2) - (t^6.11*y)/(g1*g2^4*g3) - (2*t^6.15*y)/(g2^3*g3^3) + (g1*t^7.1*y)/g2^9 + (g3*t^7.1*y)/(g1*g2^8) + (3*t^7.13*y)/(g2^7*g3) + (2*g1*t^7.16*y)/(g2^6*g3^3) + (2*t^7.16*y)/(g1*g2^5*g3^2) + (t^7.19*y)/(g2^4*g3^4) + (g3^4*t^7.89*y)/g2^2 + (g1*g3^2*t^7.92*y)/g2 + (g3^3*t^7.92*y)/g1 + 4*g2*g3*t^7.95*y + (g2^3*t^7.98*y)/g1 + (g1*g2^2*t^7.98*y)/g3 + (g2^4*t^8.01*y)/g3^2 - (g3*t^8.12*y)/g2^11 - (t^8.15*y)/(g1*g2^9) - (g1*t^8.15*y)/(g2^10*g3) - (g1^2*t^8.18*y)/(g2^9*g3^3) - (3*t^8.18*y)/(g2^8*g3^2) - (t^8.18*y)/(g1^2*g2^7*g3) - (2*g1*t^8.21*y)/(g2^7*g3^4) - (2*t^8.21*y)/(g1*g2^6*g3^3) - (3*t^8.24*y)/(g2^5*g3^5) + (g3^6*t^8.88*y)/g2^6 + (2*g1*g3^4*t^8.91*y)/g2^5 + (2*g3^5*t^8.91*y)/(g1*g2^4) + (g1^2*g3^2*t^8.94*y)/g2^4 + (4*g3^3*t^8.94*y)/g2^3 + (g3^4*t^8.94*y)/(g1^2*g2^2) + (2*g1*g3*t^8.97*y)/g2^2 + (2*g3^2*t^8.97*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
764 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ | 0.6895 | 0.8749 | 0.7881 | [X:[], M:[0.7005, 0.7005, 0.6863, 0.6958, 0.6911, 1.2995], q:[0.819, 0.8331], qb:[0.4805, 0.4758], phi:[0.3479]] | t^2.06 + t^2.07 + 2*t^2.09 + t^2.1 + t^2.87 + t^3.88 + t^3.9 + t^3.93 + t^4.12 + t^4.13 + 3*t^4.15 + 3*t^4.16 + 4*t^4.17 + 2*t^4.19 + t^4.2 + t^4.93 + t^4.94 + 3*t^4.96 + t^4.97 + t^5.74 + t^5.94 + 2*t^5.96 + 2*t^5.97 + 2*t^5.99 - t^6. - t^4.04/y - t^4.04*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
302 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ | 0.7102 | 0.9148 | 0.7763 | [X:[], M:[0.6894, 0.6991, 0.6894, 0.6926, 0.6862], q:[0.8268, 0.8268], qb:[0.4837, 0.4773], phi:[0.3463]] | t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.1 + t^2.88 + 2*t^3.91 + t^4.12 + 2*t^4.13 + 5*t^4.14 + 4*t^4.15 + 4*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.94 + 2*t^4.95 + 3*t^4.96 + t^4.98 + t^5.77 + 2*t^5.97 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^4.04/y - t^4.04*y | detail |