Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1836 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6898 0.8768 0.7867 [M:[0.6887, 0.72, 0.6783, 0.6991, 1.28, 0.6887], q:[0.8252, 0.8252], qb:[0.4861, 0.4652], phi:[0.3496]] [M:[[-7, -1], [2, -10], [-10, 2], [-4, -4], [-2, 10], [-7, -1]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.035 + 2*t^2.066 + 2*t^2.097 + t^2.854 + t^3.84 + 2*t^3.871 + t^4.07 + 2*t^4.101 + 5*t^4.132 + 4*t^4.164 + 3*t^4.195 + t^4.889 + 2*t^4.92 + 3*t^4.951 + t^5.708 + t^5.875 + 4*t^5.906 + 5*t^5.938 + 2*t^5.969 - 3*t^6. - 2*t^6.031 - t^6.062 + t^6.105 + 2*t^6.136 + 5*t^6.167 + 8*t^6.199 + 9*t^6.23 + 6*t^6.261 + 4*t^6.292 + t^6.694 + 2*t^6.725 + t^6.924 + 2*t^6.955 + 5*t^6.986 + 4*t^7.017 + 3*t^7.049 - 2*t^7.08 - t^7.111 + t^7.68 + 2*t^7.711 + 3*t^7.743 - 2*t^7.836 - t^7.868 + t^7.91 + 4*t^7.941 + 8*t^7.972 + 10*t^8.004 + 2*t^8.035 - 6*t^8.066 - 10*t^8.097 - 6*t^8.129 + t^8.14 - 2*t^8.16 + 2*t^8.171 + 5*t^8.202 + 8*t^8.233 + 14*t^8.265 + 14*t^8.296 + 13*t^8.327 + 8*t^8.358 + 5*t^8.39 + t^8.562 + t^8.729 + 4*t^8.76 + 5*t^8.791 + 2*t^8.823 - 5*t^8.854 - 4*t^8.885 - 2*t^8.916 + t^8.959 + 2*t^8.99 - t^4.049/y - t^6.084/y - (2*t^6.115)/y - (2*t^6.146)/y + (2*t^7.101)/y + (3*t^7.132)/y + (4*t^7.164)/y + t^7.195/y + t^7.889/y + (2*t^7.92)/y + (4*t^7.951)/y + (2*t^7.983)/y + t^8.014/y - t^8.119/y - (2*t^8.15)/y - (5*t^8.181)/y - (4*t^8.212)/y - (3*t^8.244)/y + t^8.875/y + (4*t^8.906)/y + (6*t^8.938)/y + (4*t^8.969)/y - t^4.049*y - t^6.084*y - 2*t^6.115*y - 2*t^6.146*y + 2*t^7.101*y + 3*t^7.132*y + 4*t^7.164*y + t^7.195*y + t^7.889*y + 2*t^7.92*y + 4*t^7.951*y + 2*t^7.983*y + t^8.014*y - t^8.119*y - 2*t^8.15*y - 5*t^8.181*y - 4*t^8.212*y - 3*t^8.244*y + t^8.875*y + 4*t^8.906*y + 6*t^8.938*y + 4*t^8.969*y (g2^2*t^2.035)/g1^10 + (2*t^2.066)/(g1^7*g2) + (2*t^2.097)/(g1^4*g2^4) + g1^6*g2^6*t^2.854 + (g2^10*t^3.84)/g1^2 + 2*g1*g2^7*t^3.871 + (g2^4*t^4.07)/g1^20 + (2*g2*t^4.101)/g1^17 + (5*t^4.132)/(g1^14*g2^2) + (4*t^4.164)/(g1^11*g2^5) + (3*t^4.195)/(g1^8*g2^8) + (g2^8*t^4.889)/g1^4 + (2*g2^5*t^4.92)/g1 + 3*g1^2*g2^2*t^4.951 + g1^12*g2^12*t^5.708 + (g2^12*t^5.875)/g1^12 + (4*g2^9*t^5.906)/g1^9 + (5*g2^6*t^5.938)/g1^6 + (2*g2^3*t^5.969)/g1^3 - 3*t^6. - (2*g1^3*t^6.031)/g2^3 - (g1^6*t^6.062)/g2^6 + (g2^6*t^6.105)/g1^30 + (2*g2^3*t^6.136)/g1^27 + (5*t^6.167)/g1^24 + (8*t^6.199)/(g1^21*g2^3) + (9*t^6.23)/(g1^18*g2^6) + (6*t^6.261)/(g1^15*g2^9) + (4*t^6.292)/(g1^12*g2^12) + g1^4*g2^16*t^6.694 + 2*g1^7*g2^13*t^6.725 + (g2^10*t^6.924)/g1^14 + (2*g2^7*t^6.955)/g1^11 + (5*g2^4*t^6.986)/g1^8 + (4*g2*t^7.017)/g1^5 + (3*t^7.049)/(g1^2*g2^2) - (2*g1*t^7.08)/g2^5 - (g1^4*t^7.111)/g2^8 + (g2^20*t^7.68)/g1^4 + (2*g2^17*t^7.711)/g1 + 3*g1^2*g2^14*t^7.743 - 2*g1^11*g2^5*t^7.836 - g1^14*g2^2*t^7.868 + (g2^14*t^7.91)/g1^22 + (4*g2^11*t^7.941)/g1^19 + (8*g2^8*t^7.972)/g1^16 + (10*g2^5*t^8.004)/g1^13 + (2*g2^2*t^8.035)/g1^10 - (6*t^8.066)/(g1^7*g2) - (10*t^8.097)/(g1^4*g2^4) - (6*t^8.129)/(g1*g2^7) + (g2^8*t^8.14)/g1^40 - (2*g1^2*t^8.16)/g2^10 + (2*g2^5*t^8.171)/g1^37 + (5*g2^2*t^8.202)/g1^34 + (8*t^8.233)/(g1^31*g2) + (14*t^8.265)/(g1^28*g2^4) + (14*t^8.296)/(g1^25*g2^7) + (13*t^8.327)/(g1^22*g2^10) + (8*t^8.358)/(g1^19*g2^13) + (5*t^8.39)/(g1^16*g2^16) + g1^18*g2^18*t^8.562 + (g2^18*t^8.729)/g1^6 + (4*g2^15*t^8.76)/g1^3 + 5*g2^12*t^8.791 + 2*g1^3*g2^9*t^8.823 - 5*g1^6*g2^6*t^8.854 - 4*g1^9*g2^3*t^8.885 - 2*g1^12*t^8.916 + (g2^12*t^8.959)/g1^24 + (2*g2^9*t^8.99)/g1^21 - t^4.049/(g1^2*g2^2*y) - t^6.084/(g1^12*y) - (2*t^6.115)/(g1^9*g2^3*y) - (2*t^6.146)/(g1^6*g2^6*y) + (2*g2*t^7.101)/(g1^17*y) + (3*t^7.132)/(g1^14*g2^2*y) + (4*t^7.164)/(g1^11*g2^5*y) + t^7.195/(g1^8*g2^8*y) + (g2^8*t^7.889)/(g1^4*y) + (2*g2^5*t^7.92)/(g1*y) + (4*g1^2*g2^2*t^7.951)/y + (2*g1^5*t^7.983)/(g2*y) + (g1^8*t^8.014)/(g2^4*y) - (g2^2*t^8.119)/(g1^22*y) - (2*t^8.15)/(g1^19*g2*y) - (5*t^8.181)/(g1^16*g2^4*y) - (4*t^8.212)/(g1^13*g2^7*y) - (3*t^8.244)/(g1^10*g2^10*y) + (g2^12*t^8.875)/(g1^12*y) + (4*g2^9*t^8.906)/(g1^9*y) + (6*g2^6*t^8.938)/(g1^6*y) + (4*g2^3*t^8.969)/(g1^3*y) - (t^4.049*y)/(g1^2*g2^2) - (t^6.084*y)/g1^12 - (2*t^6.115*y)/(g1^9*g2^3) - (2*t^6.146*y)/(g1^6*g2^6) + (2*g2*t^7.101*y)/g1^17 + (3*t^7.132*y)/(g1^14*g2^2) + (4*t^7.164*y)/(g1^11*g2^5) + (t^7.195*y)/(g1^8*g2^8) + (g2^8*t^7.889*y)/g1^4 + (2*g2^5*t^7.92*y)/g1 + 4*g1^2*g2^2*t^7.951*y + (2*g1^5*t^7.983*y)/g2 + (g1^8*t^8.014*y)/g2^4 - (g2^2*t^8.119*y)/g1^22 - (2*t^8.15*y)/(g1^19*g2) - (5*t^8.181*y)/(g1^16*g2^4) - (4*t^8.212*y)/(g1^13*g2^7) - (3*t^8.244*y)/(g1^10*g2^10) + (g2^12*t^8.875*y)/g1^12 + (4*g2^9*t^8.906*y)/g1^9 + (6*g2^6*t^8.938*y)/g1^6 + (4*g2^3*t^8.969*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
389 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ 0.6691 0.8364 0.8 [M:[0.6923, 0.7194, 0.6833, 0.7014, 1.2806], q:[0.8247, 0.8247], qb:[0.483, 0.4649], phi:[0.3507]] t^2.05 + t^2.077 + 2*t^2.104 + t^2.844 + t^3.842 + 2*t^3.869 + t^3.923 + t^4.1 + t^4.127 + 3*t^4.154 + 2*t^4.181 + 3*t^4.208 + t^4.894 + t^4.921 + 3*t^4.948 + t^5.688 + t^5.892 + 3*t^5.919 + 3*t^5.946 + 3*t^5.973 - 2*t^6. - t^4.052/y - t^4.052*y detail