Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45963 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ 0.6898 0.8768 0.7867 [X:[], M:[0.6991, 0.6887, 0.6783, 0.6887], q:[0.8096, 0.8408], qb:[0.4704, 0.4809], phi:[0.3496]] [X:[], M:[[0, -2, -2], [-1, -3, 0], [-1, 0, -3], [0, 1, -5]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_4$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_2M_3$, $ M_2^2$, $ M_4^2$, $ M_1M_3$, $ M_2M_4$, $ M_3\phi_1^2$, $ M_1M_4$, $ M_4\phi_1^2$, $ M_1M_2$, $ M_2\phi_1^2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_3\phi_1\tilde{q}_1^2$, $ M_2q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_1q_1\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_4q_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_1^2$, $ M_1q_1\tilde{q}_2$ . -3 t^2.03 + 2*t^2.07 + 2*t^2.1 + t^2.85 + t^3.84 + 2*t^3.87 + t^4.07 + 2*t^4.1 + 5*t^4.13 + 4*t^4.16 + 3*t^4.19 + t^4.89 + 2*t^4.92 + 3*t^4.95 + t^5.71 + t^5.88 + 4*t^5.91 + 5*t^5.94 + 2*t^5.97 - 3*t^6. - 2*t^6.03 - t^6.06 + t^6.1 + 2*t^6.14 + 5*t^6.17 + 8*t^6.2 + 9*t^6.23 + 6*t^6.26 + 4*t^6.29 + t^6.69 + 2*t^6.73 + t^6.92 + 2*t^6.95 + 5*t^6.99 + 4*t^7.02 + 3*t^7.05 - 2*t^7.08 - t^7.11 + t^7.68 + 2*t^7.71 + 3*t^7.74 - 2*t^7.84 - t^7.87 + t^7.91 + 4*t^7.94 + 8*t^7.97 + 10*t^8. + 2*t^8.03 - 6*t^8.07 - 10*t^8.1 - 6*t^8.13 + t^8.14 - 2*t^8.16 + 2*t^8.17 + 5*t^8.2 + 8*t^8.23 + 14*t^8.26 + 14*t^8.3 + 13*t^8.33 + 8*t^8.36 + 5*t^8.39 + t^8.56 + t^8.73 + 4*t^8.76 + 5*t^8.79 + 2*t^8.82 - 5*t^8.85 - 4*t^8.89 - 2*t^8.92 + t^8.96 + 2*t^8.99 - t^4.05/y - t^6.08/y - (2*t^6.11)/y - (2*t^6.15)/y + (2*t^7.1)/y + (3*t^7.13)/y + (4*t^7.16)/y + t^7.19/y + t^7.89/y + (2*t^7.92)/y + (4*t^7.95)/y + (2*t^7.98)/y + t^8.01/y - t^8.12/y - (2*t^8.15)/y - (5*t^8.18)/y - (4*t^8.21)/y - (3*t^8.24)/y + t^8.88/y + (4*t^8.91)/y + (6*t^8.94)/y + (4*t^8.97)/y - t^4.05*y - t^6.08*y - 2*t^6.11*y - 2*t^6.15*y + 2*t^7.1*y + 3*t^7.13*y + 4*t^7.16*y + t^7.19*y + t^7.89*y + 2*t^7.92*y + 4*t^7.95*y + 2*t^7.98*y + t^8.01*y - t^8.12*y - 2*t^8.15*y - 5*t^8.18*y - 4*t^8.21*y - 3*t^8.24*y + t^8.88*y + 4*t^8.91*y + 6*t^8.94*y + 4*t^8.97*y t^2.03/(g1*g3^3) + t^2.07/(g1*g2^3) + (g2*t^2.07)/g3^5 + (2*t^2.1)/(g2^2*g3^2) + g2^3*g3^3*t^2.85 + (g2^4*g3*t^3.84)/g1 + (g2^5*t^3.87)/g3 + (g2*g3^4*t^3.87)/g1 + t^4.07/(g1^2*g3^6) + (g2*t^4.1)/(g1*g3^8) + t^4.1/(g1^2*g2^3*g3^3) + t^4.13/(g1^2*g2^6) + (g2^2*t^4.13)/g3^10 + (3*t^4.13)/(g1*g2^2*g3^5) + (2*t^4.16)/(g2*g3^7) + (2*t^4.16)/(g1*g2^5*g3^2) + (3*t^4.19)/(g2^4*g3^4) + (g2^3*t^4.89)/g1 + (g2^4*t^4.92)/g3^2 + (g3^3*t^4.92)/g1 + 3*g2*g3*t^4.95 + g2^6*g3^6*t^5.71 + (g2^4*t^5.88)/(g1^2*g3^2) + (2*g2^5*t^5.91)/(g1*g3^4) + (2*g2*g3*t^5.91)/g1^2 + (g2^6*t^5.94)/g3^6 + (3*g2^2*t^5.94)/(g1*g3) + (g3^4*t^5.94)/(g1^2*g2^2) + (g2^3*t^5.97)/g3^3 + (g3^2*t^5.97)/(g1*g2) - 3*t^6. - (g1*g2*t^6.03)/g3^2 - (g3^3*t^6.03)/g2^3 - (g1*g3*t^6.06)/g2^2 + t^6.1/(g1^3*g3^9) + (g2*t^6.14)/(g1^2*g3^11) + t^6.14/(g1^3*g2^3*g3^6) + (g2^2*t^6.17)/(g1*g3^13) + (3*t^6.17)/(g1^2*g2^2*g3^8) + t^6.17/(g1^3*g2^6*g3^3) + t^6.2/(g1^3*g2^9) + (g2^3*t^6.2)/g3^15 + (3*t^6.2)/(g1*g2*g3^10) + (3*t^6.2)/(g1^2*g2^5*g3^5) + (2*t^6.23)/g3^12 + (5*t^6.23)/(g1*g2^4*g3^7) + (2*t^6.23)/(g1^2*g2^8*g3^2) + (3*t^6.26)/(g2^3*g3^9) + (3*t^6.26)/(g1*g2^7*g3^4) + (4*t^6.29)/(g2^6*g3^6) + (g2^7*g3^4*t^6.69)/g1 + g2^8*g3^2*t^6.73 + (g2^4*g3^7*t^6.73)/g1 + (g2^3*t^6.92)/(g1^2*g3^3) + t^6.95/g1^2 + (g2^4*t^6.95)/(g1*g3^5) + (g2^5*t^6.99)/g3^7 + (3*g2*t^6.99)/(g1*g3^2) + (g3^3*t^6.99)/(g1^2*g2^3) + (2*g2^2*t^7.02)/g3^4 + (2*g3*t^7.02)/(g1*g2^2) + (3*t^7.05)/(g2*g3) - (g1*t^7.08)/g3^3 - (g3^2*t^7.08)/g2^4 - (g1*t^7.11)/g2^3 + (g2^8*g3^2*t^7.68)/g1^2 + (g2^9*t^7.71)/g1 + (g2^5*g3^5*t^7.71)/g1^2 + (g2^10*t^7.74)/g3^2 + (g2^6*g3^3*t^7.74)/g1 + (g2^2*g3^8*t^7.74)/g1^2 - g1*g2^5*g3^2*t^7.84 - g2*g3^7*t^7.84 - g1*g2^2*g3^5*t^7.87 + (g2^4*t^7.91)/(g1^3*g3^5) + (2*g2^5*t^7.94)/(g1^2*g3^7) + (2*g2*t^7.94)/(g1^3*g3^2) + (2*g2^6*t^7.97)/(g1*g3^9) + (4*g2^2*t^7.97)/(g1^2*g3^4) + (2*g3*t^7.97)/(g1^3*g2^2) + (g2^7*t^8.)/g3^11 + (4*g2^3*t^8.)/(g1*g3^6) + (4*t^8.)/(g1^2*g2*g3) + (g3^4*t^8.)/(g1^3*g2^5) + (g2^4*t^8.03)/g3^8 + (g3^2*t^8.03)/(g1^2*g2^4) - (3*t^8.07)/(g1*g2^3) - (3*g2*t^8.07)/g3^5 - (g1*g2^2*t^8.1)/g3^7 - (8*t^8.1)/(g2^2*g3^2) - (g3^3*t^8.1)/(g1*g2^6) - (3*g1*t^8.13)/(g2*g3^4) - (3*g3*t^8.13)/g2^5 + t^8.14/(g1^4*g3^12) - (2*g1*t^8.16)/(g2^4*g3) + (g2*t^8.17)/(g1^3*g3^14) + t^8.17/(g1^4*g2^3*g3^9) + (g2^2*t^8.2)/(g1^2*g3^16) + (3*t^8.2)/(g1^3*g2^2*g3^11) + t^8.2/(g1^4*g2^6*g3^6) + (g2^3*t^8.23)/(g1*g3^18) + (3*t^8.23)/(g1^2*g2*g3^13) + (3*t^8.23)/(g1^3*g2^5*g3^8) + t^8.23/(g1^4*g2^9*g3^3) + t^8.26/(g1^4*g2^12) + (g2^4*t^8.26)/g3^20 + (3*t^8.26)/(g1*g3^15) + (6*t^8.26)/(g1^2*g2^4*g3^10) + (3*t^8.26)/(g1^3*g2^8*g3^5) + (2*g2*t^8.3)/g3^17 + (5*t^8.3)/(g1*g2^3*g3^12) + (5*t^8.3)/(g1^2*g2^7*g3^7) + (2*t^8.3)/(g1^3*g2^11*g3^2) + (3*t^8.33)/(g2^2*g3^14) + (7*t^8.33)/(g1*g2^6*g3^9) + (3*t^8.33)/(g1^2*g2^10*g3^4) + (4*t^8.36)/(g2^5*g3^11) + (4*t^8.36)/(g1*g2^9*g3^6) + (5*t^8.39)/(g2^8*g3^8) + g2^9*g3^9*t^8.56 + (g2^7*g3*t^8.73)/g1^2 + (2*g2^8*t^8.76)/(g1*g3) + (2*g2^4*g3^4*t^8.76)/g1^2 + (g2^9*t^8.79)/g3^3 + (3*g2^5*g3^2*t^8.79)/g1 + (g2*g3^7*t^8.79)/g1^2 + g2^6*t^8.82 + (g2^2*g3^5*t^8.82)/g1 - 5*g2^3*g3^3*t^8.85 - 2*g1*g2^4*g3*t^8.89 - 2*g3^6*t^8.89 - 2*g1*g2*g3^4*t^8.92 + (g2^3*t^8.96)/(g1^3*g3^6) + (g2^4*t^8.99)/(g1^2*g3^8) + t^8.99/(g1^3*g3^3) - t^4.05/(g2*g3*y) - t^6.08/(g1*g2*g3^4*y) - t^6.11/(g3^6*y) - t^6.11/(g1*g2^4*g3*y) - (2*t^6.15)/(g2^3*g3^3*y) + (g2*t^7.1)/(g1*g3^8*y) + t^7.1/(g1^2*g2^3*g3^3*y) + (3*t^7.13)/(g1*g2^2*g3^5*y) + (2*t^7.16)/(g2*g3^7*y) + (2*t^7.16)/(g1*g2^5*g3^2*y) + t^7.19/(g2^4*g3^4*y) + (g2^3*t^7.89)/(g1*y) + (g2^4*t^7.92)/(g3^2*y) + (g3^3*t^7.92)/(g1*y) + (4*g2*g3*t^7.95)/y + (g1*g2^2*t^7.98)/(g3*y) + (g3^4*t^7.98)/(g2^2*y) + (g1*g3^2*t^8.01)/(g2*y) - t^8.12/(g1^2*g2*g3^7*y) - t^8.15/(g1*g3^9*y) - t^8.15/(g1^2*g2^4*g3^4*y) - (g2*t^8.18)/(g3^11*y) - (3*t^8.18)/(g1*g2^3*g3^6*y) - t^8.18/(g1^2*g2^7*g3*y) - (2*t^8.21)/(g2^2*g3^8*y) - (2*t^8.21)/(g1*g2^6*g3^3*y) - (3*t^8.24)/(g2^5*g3^5*y) + (g2^4*t^8.88)/(g1^2*g3^2*y) + (2*g2^5*t^8.91)/(g1*g3^4*y) + (2*g2*g3*t^8.91)/(g1^2*y) + (g2^6*t^8.94)/(g3^6*y) + (4*g2^2*t^8.94)/(g1*g3*y) + (g3^4*t^8.94)/(g1^2*g2^2*y) + (2*g2^3*t^8.97)/(g3^3*y) + (2*g3^2*t^8.97)/(g1*g2*y) - (t^4.05*y)/(g2*g3) - (t^6.08*y)/(g1*g2*g3^4) - (t^6.11*y)/g3^6 - (t^6.11*y)/(g1*g2^4*g3) - (2*t^6.15*y)/(g2^3*g3^3) + (g2*t^7.1*y)/(g1*g3^8) + (t^7.1*y)/(g1^2*g2^3*g3^3) + (3*t^7.13*y)/(g1*g2^2*g3^5) + (2*t^7.16*y)/(g2*g3^7) + (2*t^7.16*y)/(g1*g2^5*g3^2) + (t^7.19*y)/(g2^4*g3^4) + (g2^3*t^7.89*y)/g1 + (g2^4*t^7.92*y)/g3^2 + (g3^3*t^7.92*y)/g1 + 4*g2*g3*t^7.95*y + (g1*g2^2*t^7.98*y)/g3 + (g3^4*t^7.98*y)/g2^2 + (g1*g3^2*t^8.01*y)/g2 - (t^8.12*y)/(g1^2*g2*g3^7) - (t^8.15*y)/(g1*g3^9) - (t^8.15*y)/(g1^2*g2^4*g3^4) - (g2*t^8.18*y)/g3^11 - (3*t^8.18*y)/(g1*g2^3*g3^6) - (t^8.18*y)/(g1^2*g2^7*g3) - (2*t^8.21*y)/(g2^2*g3^8) - (2*t^8.21*y)/(g1*g2^6*g3^3) - (3*t^8.24*y)/(g2^5*g3^5) + (g2^4*t^8.88*y)/(g1^2*g3^2) + (2*g2^5*t^8.91*y)/(g1*g3^4) + (2*g2*g3*t^8.91*y)/g1^2 + (g2^6*t^8.94*y)/g3^6 + (4*g2^2*t^8.94*y)/(g1*g3) + (g3^4*t^8.94*y)/(g1^2*g2^2) + (2*g2^3*t^8.97*y)/g3^3 + (2*g3^2*t^8.97*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46127 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_3M_4$ 0.606 0.7574 0.8002 [X:[], M:[0.7718, 0.736, 0.9821, 1.0179], q:[0.8944, 0.7198], qb:[0.5442, 0.2981], phi:[0.3859]] t^2.21 + 2*t^2.32 + t^2.53 + t^2.95 + t^3.05 + t^3.58 + t^4.32 + 2*t^4.42 + 2*t^4.52 + 3*t^4.63 + t^4.74 + 3*t^4.84 + t^5.05 + t^5.15 + 2*t^5.26 + t^5.37 + t^5.47 + t^5.58 + t^5.79 + 2*t^5.89 - 2*t^6. - t^4.16/y - t^4.16*y detail
46312 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_3^2$ 0.6177 0.7659 0.8065 [X:[], M:[0.7433, 0.8717, 1.0, 0.8717], q:[1.0067, 0.6217], qb:[0.5067, 0.3783], phi:[0.3717]] 2*t^2.23 + 2*t^2.61 + t^2.66 + t^3. + 2*t^4.16 + 3*t^4.46 + t^4.54 + 4*t^4.84 + 3*t^4.89 + 4*t^5.23 + 2*t^5.27 + t^5.31 + t^5.66 - 2*t^6. - t^4.11/y - t^4.11*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45899 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ 0.6692 0.8369 0.7996 [X:[], M:[0.7022, 0.6851, 0.6851], q:[0.8074, 0.8415], qb:[0.4734, 0.4734], phi:[0.3511]] 2*t^2.06 + 2*t^2.11 + t^2.84 + 2*t^3.84 + 2*t^3.89 + 3*t^4.11 + 4*t^4.16 + 3*t^4.21 + 2*t^4.9 + 3*t^4.95 + t^5.68 + 4*t^5.9 + 6*t^5.95 - t^6. - t^4.05/y - t^4.05*y detail