Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55626 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_5\phi_1\tilde{q}_1^2$ | 0.6543 | 0.8201 | 0.7978 | [X:[1.615], M:[0.385, 0.6947, 1.1549, 0.8451, 0.7323, 0.8451], q:[0.8639, 0.7511], qb:[0.4414, 0.4038], phi:[0.385]] | [X:[[4]], M:[[-4], [-28], [-12], [12], [-18], [12]], q:[[17], [-13]], qb:[[11], [1]], phi:[[-4]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$ | $\phi_1^3\tilde{q}_1\tilde{q}_2$ | -1 | t^2.08 + t^2.2 + t^2.31 + 2*t^2.54 + 2*t^3.58 + t^3.69 + t^3.8 + t^4.17 + t^4.28 + 2*t^4.39 + t^4.51 + 3*t^4.62 + 2*t^4.73 + 3*t^4.85 + 3*t^5.07 + 2*t^5.66 + 2*t^5.77 + 2*t^5.89 - t^6. + 3*t^6.11 + t^6.23 + t^6.25 + 2*t^6.34 + t^6.37 + 2*t^6.48 + 2*t^6.59 + 4*t^6.7 + 3*t^6.82 + 5*t^6.93 + t^7.04 + 6*t^7.15 + t^7.27 + 4*t^7.38 - t^7.49 + 4*t^7.61 + 2*t^7.75 + 2*t^7.86 + 3*t^7.97 - t^8.08 + 2*t^8.2 + t^8.34 + 2*t^8.42 + t^8.45 - 4*t^8.54 + 2*t^8.56 + 3*t^8.65 + 2*t^8.67 + 5*t^8.79 + 3*t^8.87 + 4*t^8.9 - t^4.15/y - t^6.24/y - t^6.35/y - t^6.46/y - t^6.69/y + t^7.28/y + t^7.39/y + t^7.51/y + (3*t^7.62)/y + (2*t^7.73)/y + (3*t^7.85)/y + t^7.96/y + (2*t^8.07)/y - t^8.32/y - t^8.44/y - (2*t^8.55)/y + t^8.66/y + t^8.77/y + (3*t^8.89)/y - t^4.15*y - t^6.24*y - t^6.35*y - t^6.46*y - t^6.69*y + t^7.28*y + t^7.39*y + t^7.51*y + 3*t^7.62*y + 2*t^7.73*y + 3*t^7.85*y + t^7.96*y + 2*t^8.07*y - t^8.32*y - t^8.44*y - 2*t^8.55*y + t^8.66*y + t^8.77*y + 3*t^8.89*y | t^2.08/g1^28 + t^2.2/g1^18 + t^2.31/g1^8 + 2*g1^12*t^2.54 + (2*t^3.58)/g1^2 + g1^8*t^3.69 + g1^18*t^3.8 + t^4.17/g1^56 + t^4.28/g1^46 + (2*t^4.39)/g1^36 + t^4.51/g1^26 + (3*t^4.62)/g1^16 + (2*t^4.73)/g1^6 + 3*g1^4*t^4.85 + 3*g1^24*t^5.07 + (2*t^5.66)/g1^30 + (2*t^5.77)/g1^20 + (2*t^5.89)/g1^10 - t^6. + 3*g1^10*t^6.11 + g1^20*t^6.23 + t^6.25/g1^84 + 2*g1^30*t^6.34 + t^6.37/g1^74 + (2*t^6.48)/g1^64 + (2*t^6.59)/g1^54 + (4*t^6.7)/g1^44 + (3*t^6.82)/g1^34 + (5*t^6.93)/g1^24 + t^7.04/g1^14 + (6*t^7.15)/g1^4 + g1^6*t^7.27 + 4*g1^16*t^7.38 - g1^26*t^7.49 + 4*g1^36*t^7.61 + (2*t^7.75)/g1^58 + (2*t^7.86)/g1^48 + (3*t^7.97)/g1^38 - t^8.08/g1^28 + (2*t^8.2)/g1^18 + t^8.34/g1^112 + 2*g1^2*t^8.42 + t^8.45/g1^102 - 4*g1^12*t^8.54 + (2*t^8.56)/g1^92 + 3*g1^22*t^8.65 + (2*t^8.67)/g1^82 + (5*t^8.79)/g1^72 + 3*g1^42*t^8.87 + (4*t^8.9)/g1^62 - t^4.15/(g1^4*y) - t^6.24/(g1^32*y) - t^6.35/(g1^22*y) - t^6.46/(g1^12*y) - (g1^8*t^6.69)/y + t^7.28/(g1^46*y) + t^7.39/(g1^36*y) + t^7.51/(g1^26*y) + (3*t^7.62)/(g1^16*y) + (2*t^7.73)/(g1^6*y) + (3*g1^4*t^7.85)/y + (g1^14*t^7.96)/y + (2*g1^24*t^8.07)/y - t^8.32/(g1^60*y) - t^8.44/(g1^50*y) - (2*t^8.55)/(g1^40*y) + t^8.66/(g1^30*y) + t^8.77/(g1^20*y) + (3*t^8.89)/(g1^10*y) - (t^4.15*y)/g1^4 - (t^6.24*y)/g1^32 - (t^6.35*y)/g1^22 - (t^6.46*y)/g1^12 - g1^8*t^6.69*y + (t^7.28*y)/g1^46 + (t^7.39*y)/g1^36 + (t^7.51*y)/g1^26 + (3*t^7.62*y)/g1^16 + (2*t^7.73*y)/g1^6 + 3*g1^4*t^7.85*y + g1^14*t^7.96*y + 2*g1^24*t^8.07*y - (t^8.32*y)/g1^60 - (t^8.44*y)/g1^50 - (2*t^8.55*y)/g1^40 + (t^8.66*y)/g1^30 + (t^8.77*y)/g1^20 + (3*t^8.89*y)/g1^10 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47265 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ | 0.6546 | 0.8215 | 0.7969 | [X:[1.6145], M:[0.3855, 0.6986, 1.1566, 0.8434, 0.7153, 0.8434], q:[0.8713, 0.7432], qb:[0.4301, 0.4134], phi:[0.3855]] | t^2.1 + t^2.15 + t^2.31 + 2*t^2.53 + t^3.52 + t^3.64 + t^3.69 + t^3.74 + t^4.19 + t^4.24 + t^4.29 + t^4.41 + t^4.46 + 3*t^4.63 + 2*t^4.68 + 3*t^4.84 + 3*t^5.06 + t^5.62 + t^5.67 + t^5.73 + t^5.78 + 2*t^5.83 + t^5.88 - 2*t^6. - t^4.16/y - t^4.16*y | detail |