Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55632 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6728 | 0.8544 | 0.7875 | [X:[1.6159], M:[0.3841, 0.6889, 1.1524, 0.8476, 0.7107, 0.8476, 0.7683], q:[0.8764, 0.7395], qb:[0.4347, 0.4129], phi:[0.3841]] | [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [-2, -4], [0, 3], [0, -2]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ M_7$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_5M_7$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_2^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ M_7\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ | . | -3 | t^2.07 + t^2.13 + 2*t^2.3 + 2*t^2.54 + t^3.52 + t^3.63 + t^3.76 + t^4.13 + t^4.2 + t^4.26 + 2*t^4.37 + 2*t^4.44 + 5*t^4.61 + 2*t^4.68 + 5*t^4.85 + 3*t^5.09 + t^5.59 + t^5.65 + t^5.7 + 2*t^5.83 + t^5.89 + t^5.93 - 3*t^6. + 3*t^6.07 + t^6.17 + t^6.2 - t^6.24 + t^6.27 + 2*t^6.3 + t^6.33 + t^6.4 + 2*t^6.44 + 2*t^6.5 + 2*t^6.57 + 5*t^6.68 + 5*t^6.74 + 2*t^6.81 + 8*t^6.91 + 4*t^6.98 + t^7.05 - t^7.09 + 9*t^7.15 + t^7.22 + t^7.26 + t^7.28 - 2*t^7.32 + 5*t^7.39 - t^7.46 + t^7.52 - t^7.56 + 3*t^7.63 + t^7.66 + t^7.72 + t^7.76 + t^7.79 + 2*t^7.89 + 2*t^7.96 + t^8. + t^8.03 - 4*t^8.07 + t^8.13 + 3*t^8.2 + 2*t^8.24 + t^8.27 - 8*t^8.3 + t^8.33 + 4*t^8.37 + t^8.4 + 2*t^8.44 + t^8.46 + 2*t^8.5 + t^8.53 - 10*t^8.54 + 2*t^8.57 + 5*t^8.61 + 2*t^8.64 + 2*t^8.7 + 5*t^8.74 - 3*t^8.78 + 5*t^8.81 + 3*t^8.85 + 5*t^8.87 + 2*t^8.94 + 8*t^8.98 - t^4.15/y - t^6.22/y - t^6.28/y - (2*t^6.46)/y - t^6.7/y + t^7.2/y + (2*t^7.37)/y + (2*t^7.44)/y + (4*t^7.61)/y + (2*t^7.68)/y + (6*t^7.85)/y + t^8.02/y + (2*t^8.09)/y - t^8.29/y - t^8.35/y - t^8.42/y - (2*t^8.52)/y - t^8.59/y + t^8.65/y + t^8.7/y - (3*t^8.76)/y + (2*t^8.83)/y + t^8.89/y + (2*t^8.93)/y - t^4.15*y - t^6.22*y - t^6.28*y - 2*t^6.46*y - t^6.7*y + t^7.2*y + 2*t^7.37*y + 2*t^7.44*y + 4*t^7.61*y + 2*t^7.68*y + 6*t^7.85*y + t^8.02*y + 2*t^8.09*y - t^8.29*y - t^8.35*y - t^8.42*y - 2*t^8.52*y - t^8.59*y + t^8.65*y + t^8.7*y - 3*t^8.76*y + 2*t^8.83*y + t^8.89*y + 2*t^8.93*y | t^2.07/g2^7 + t^2.13/(g1^2*g2^4) + (2*t^2.3)/g2^2 + 2*g2^3*t^2.54 + t^3.52/g1^2 + (g1^2*t^3.63)/g2 + (g2^5*t^3.76)/g1^2 + t^4.13/g2^14 + t^4.2/(g1^2*g2^11) + t^4.26/(g1^4*g2^8) + (2*t^4.37)/g2^9 + (2*t^4.44)/(g1^2*g2^6) + (5*t^4.61)/g2^4 + (2*t^4.68)/(g1^2*g2) + 5*g2*t^4.85 + 3*g2^6*t^5.09 + t^5.59/(g1^2*g2^7) + t^5.65/(g1^4*g2^4) + (g1^2*t^5.7)/g2^8 + (2*t^5.83)/(g1^2*g2^2) + (g2*t^5.89)/g1^4 + (g1^2*t^5.93)/g2^3 - 3*t^6. + (3*g2^3*t^6.07)/g1^2 + g1^2*g2^2*t^6.17 + t^6.2/g2^21 - g2^5*t^6.24 + t^6.27/(g1^2*g2^18) + (2*g2^8*t^6.3)/g1^2 + t^6.33/(g1^4*g2^15) + t^6.4/(g1^6*g2^12) + (2*t^6.44)/g2^16 + (2*t^6.5)/(g1^2*g2^13) + (2*t^6.57)/(g1^4*g2^10) + (5*t^6.68)/g2^11 + (5*t^6.74)/(g1^2*g2^8) + (2*t^6.81)/(g1^4*g2^5) + (8*t^6.91)/g2^6 + (4*t^6.98)/(g1^2*g2^3) + t^7.05/g1^4 - (g1^2*t^7.09)/g2^4 + (9*t^7.15)/g2 + (g2^2*t^7.22)/g1^2 + (g1^4*t^7.26)/g2^2 + (g2^5*t^7.28)/g1^4 - 2*g1^2*g2*t^7.32 + 5*g2^4*t^7.39 - (g2^7*t^7.46)/g1^2 + (g2^10*t^7.52)/g1^4 - g1^2*g2^6*t^7.56 + 3*g2^9*t^7.63 + t^7.66/(g1^2*g2^14) + t^7.72/(g1^4*g2^11) + (g1^2*t^7.76)/g2^15 + t^7.79/(g1^6*g2^8) + (2*t^7.89)/(g1^2*g2^9) + (2*t^7.96)/(g1^4*g2^6) + (g1^2*t^8.)/g2^10 + t^8.03/(g1^6*g2^3) - (4*t^8.07)/g2^7 + t^8.13/(g1^2*g2^4) + (3*t^8.2)/(g1^4*g2) + (2*g1^2*t^8.24)/g2^5 + t^8.27/g2^28 - (8*t^8.3)/g2^2 + t^8.33/(g1^2*g2^25) + (4*g2*t^8.37)/g1^2 + t^8.4/(g1^4*g2^22) + (2*g2^4*t^8.44)/g1^4 + t^8.46/(g1^6*g2^19) + (2*t^8.5)/g2^23 + t^8.53/(g1^8*g2^16) - 10*g2^3*t^8.54 + (2*t^8.57)/(g1^2*g2^20) + (5*g2^6*t^8.61)/g1^2 + (2*t^8.64)/(g1^4*g2^17) + (2*t^8.7)/(g1^6*g2^14) + (5*t^8.74)/g2^18 - 3*g2^8*t^8.78 + (5*t^8.81)/(g1^2*g2^15) + (3*g2^11*t^8.85)/g1^2 + (5*t^8.87)/(g1^4*g2^12) + (2*t^8.94)/(g1^6*g2^9) + (8*t^8.98)/g2^13 - t^4.15/(g2*y) - t^6.22/(g2^8*y) - t^6.28/(g1^2*g2^5*y) - (2*t^6.46)/(g2^3*y) - (g2^2*t^6.7)/y + t^7.2/(g1^2*g2^11*y) + (2*t^7.37)/(g2^9*y) + (2*t^7.44)/(g1^2*g2^6*y) + (4*t^7.61)/(g2^4*y) + (2*t^7.68)/(g1^2*g2*y) + (6*g2*t^7.85)/y + (g1^2*g2^3*t^8.02)/y + (2*g2^6*t^8.09)/y - t^8.29/(g2^15*y) - t^8.35/(g1^2*g2^12*y) - t^8.42/(g1^4*g2^9*y) - (2*t^8.52)/(g2^10*y) - t^8.59/(g1^2*g2^7*y) + t^8.65/(g1^4*g2^4*y) + (g1^2*t^8.7)/(g2^8*y) - (3*t^8.76)/(g2^5*y) + (2*t^8.83)/(g1^2*g2^2*y) + (g2*t^8.89)/(g1^4*y) + (2*g1^2*t^8.93)/(g2^3*y) - (t^4.15*y)/g2 - (t^6.22*y)/g2^8 - (t^6.28*y)/(g1^2*g2^5) - (2*t^6.46*y)/g2^3 - g2^2*t^6.7*y + (t^7.2*y)/(g1^2*g2^11) + (2*t^7.37*y)/g2^9 + (2*t^7.44*y)/(g1^2*g2^6) + (4*t^7.61*y)/g2^4 + (2*t^7.68*y)/(g1^2*g2) + 6*g2*t^7.85*y + g1^2*g2^3*t^8.02*y + 2*g2^6*t^8.09*y - (t^8.29*y)/g2^15 - (t^8.35*y)/(g1^2*g2^12) - (t^8.42*y)/(g1^4*g2^9) - (2*t^8.52*y)/g2^10 - (t^8.59*y)/(g1^2*g2^7) + (t^8.65*y)/(g1^4*g2^4) + (g1^2*t^8.7*y)/g2^8 - (3*t^8.76*y)/g2^5 + (2*t^8.83*y)/(g1^2*g2^2) + (g2*t^8.89*y)/g1^4 + (2*g1^2*t^8.93*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47265 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ | 0.6546 | 0.8215 | 0.7969 | [X:[1.6145], M:[0.3855, 0.6986, 1.1566, 0.8434, 0.7153, 0.8434], q:[0.8713, 0.7432], qb:[0.4301, 0.4134], phi:[0.3855]] | t^2.1 + t^2.15 + t^2.31 + 2*t^2.53 + t^3.52 + t^3.64 + t^3.69 + t^3.74 + t^4.19 + t^4.24 + t^4.29 + t^4.41 + t^4.46 + 3*t^4.63 + 2*t^4.68 + 3*t^4.84 + 3*t^5.06 + t^5.62 + t^5.67 + t^5.73 + t^5.78 + 2*t^5.83 + t^5.88 - 2*t^6. - t^4.16/y - t^4.16*y | detail |