Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2902 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ 0.6388 0.7919 0.8066 [X:[1.6177], M:[0.7844, 1.2353, 0.7449, 1.147, 0.3823, 0.853, 0.696], q:[0.4608, 0.7548], qb:[0.3922, 0.8629], phi:[0.3823]] [X:[[0, 1]], M:[[2, -8], [0, 2], [-2, 4], [0, -3], [0, -1], [0, 3], [2, -13]], q:[[-1, 7], [-1, 1]], qb:[[1, -4], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_3$, $ M_1$, $ M_6$, $ M_4$, $ \phi_1\tilde{q}_1^2$, $ M_2$, $ \phi_1q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_3M_7$, $ M_1M_7$, $ M_3^2$, $ M_1M_3$, $ \phi_1q_2\tilde{q}_1$, $ M_6M_7$, $ M_1^2$, $ M_3M_6$, $ \phi_1q_1q_2$, $ X_1$, $ M_1M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_7$, $ M_7\phi_1\tilde{q}_1^2$, $ M_3M_4$, $ \phi_1q_2^2$, $ M_1M_4$, $ M_2M_7$, $ M_7\phi_1q_1\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1^2$, $ M_2M_3$ . -2 t^2.09 + t^2.23 + t^2.35 + t^2.56 + t^3.44 + t^3.5 + 2*t^3.71 + t^3.97 + t^4.18 + t^4.32 + t^4.44 + t^4.47 + t^4.59 + t^4.65 + t^4.71 + t^4.79 + t^4.85 + t^4.91 + t^5.12 + t^5.53 + t^5.59 + t^5.68 + 2*t^5.79 + t^5.85 + t^5.94 - 2*t^6. + 3*t^6.06 + t^6.26 + t^6.27 + t^6.32 + t^6.41 + 2*t^6.53 + t^6.56 + t^6.68 + t^6.7 + t^6.74 + t^6.79 + t^6.82 + t^6.88 + 2*t^6.94 + 2*t^7. + t^7.03 + t^7.06 + 2*t^7.21 + t^7.27 - t^7.35 + t^7.41 + t^7.47 + 3*t^7.68 + t^7.76 + 2*t^7.88 + t^7.91 + 2*t^7.94 + t^8.03 - 2*t^8.09 + 3*t^8.15 + t^8.18 + t^8.21 - 2*t^8.23 + t^8.29 - t^8.35 + 3*t^8.41 - 2*t^8.56 + 2*t^8.62 + t^8.65 + t^8.68 + t^8.79 + 2*t^8.82 + 2*t^8.88 + t^8.91 + t^8.94 + t^8.97 - t^4.15/y - t^6.24/y - t^6.38/y - t^6.5/y + t^7.32/y + t^7.44/y + t^7.59/y + t^7.65/y + (2*t^7.79)/y + (2*t^7.91)/y + t^8.06/y - t^8.32/y - t^8.47/y + t^8.53/y - t^8.62/y + t^8.68/y + (3*t^8.79)/y + (2*t^8.94)/y - t^4.15*y - t^6.24*y - t^6.38*y - t^6.5*y + t^7.32*y + t^7.44*y + t^7.59*y + t^7.65*y + 2*t^7.79*y + 2*t^7.91*y + t^8.06*y - t^8.32*y - t^8.47*y + t^8.53*y - t^8.62*y + t^8.68*y + 3*t^8.79*y + 2*t^8.94*y (g1^2*t^2.09)/g2^13 + (g2^4*t^2.23)/g1^2 + (g1^2*t^2.35)/g2^8 + g2^3*t^2.56 + t^3.44/g2^3 + (g1^2*t^3.5)/g2^9 + 2*g2^2*t^3.71 + g2^7*t^3.97 + (g1^4*t^4.18)/g2^26 + t^4.32/g2^9 + (g1^4*t^4.44)/g2^21 + (g2^8*t^4.47)/g1^4 + t^4.59/g2^4 + (g1^2*t^4.65)/g2^10 + (g1^4*t^4.71)/g2^16 + (g2^7*t^4.79)/g1^2 + g2*t^4.85 + (g1^2*t^4.91)/g2^5 + g2^6*t^5.12 + (g1^2*t^5.53)/g2^16 + (g1^4*t^5.59)/g2^22 + (g2*t^5.68)/g1^2 + (2*g1^2*t^5.79)/g2^11 + (g1^4*t^5.85)/g2^17 + (g2^6*t^5.94)/g1^2 - 2*t^6. + (3*g1^2*t^6.06)/g2^6 + (g1^6*t^6.26)/g2^39 + g2^5*t^6.27 + (g1^2*t^6.32)/g2 + (g1^2*t^6.41)/g2^22 + (g1^6*t^6.53)/g2^34 + g2^10*t^6.53 + t^6.56/(g1^2*g2^5) + (g1^2*t^6.68)/g2^17 + (g2^12*t^6.7)/g1^6 + (g1^4*t^6.74)/g2^23 + (g1^6*t^6.79)/g2^29 + t^6.82/g1^2 + t^6.88/g2^6 + (2*g1^2*t^6.94)/g2^12 + (2*g1^4*t^7.)/g2^18 + (g2^11*t^7.03)/g1^4 + (g1^6*t^7.06)/g2^24 + (2*g1^2*t^7.21)/g2^7 + (g1^4*t^7.27)/g2^13 - (g2^10*t^7.35)/g1^2 + g2^4*t^7.41 + (g1^2*t^7.47)/g2^2 + (g1^4*t^7.62)/g2^29 - (g2^15*t^7.62)/g1^2 + (g1^6*t^7.68)/g2^35 + 2*g2^9*t^7.68 + t^7.76/g2^12 + (2*g1^4*t^7.88)/g2^24 + (g2^5*t^7.91)/g1^4 + (g1^6*t^7.94)/g2^30 + g2^14*t^7.94 + t^8.03/g2^7 - (2*g1^2*t^8.09)/g2^13 + (3*g1^4*t^8.15)/g2^19 + (g2^10*t^8.18)/g1^4 + (g1^6*t^8.21)/g2^25 - (2*g2^4*t^8.23)/g1^2 + t^8.29/g2^2 + (g1^8*t^8.35)/g2^52 - (2*g1^2*t^8.35)/g2^8 + (3*g1^4*t^8.41)/g2^14 + (g1^4*t^8.5)/g2^35 - (g2^9*t^8.5)/g1^2 - 2*g2^3*t^8.56 + (g1^8*t^8.62)/g2^47 + (g1^2*t^8.62)/g2^3 + t^8.65/g2^18 + (g1^4*t^8.68)/g2^9 + (g1^4*t^8.76)/g2^30 - (g2^14*t^8.76)/g1^2 + t^8.79/(g1^4*g2) + (g1^6*t^8.82)/g2^36 + g2^8*t^8.82 + (g1^8*t^8.88)/g2^42 + g1^2*g2^2*t^8.88 + t^8.91/g2^13 + (g2^16*t^8.94)/g1^8 + (g1^2*t^8.97)/g2^19 - t^4.15/(g2*y) - (g1^2*t^6.24)/(g2^14*y) - (g2^3*t^6.38)/(g1^2*y) - (g1^2*t^6.5)/(g2^9*y) + t^7.32/(g2^9*y) + (g1^4*t^7.44)/(g2^21*y) + t^7.59/(g2^4*y) + (g1^2*t^7.65)/(g2^10*y) + (2*g2^7*t^7.79)/(g1^2*y) + (2*g1^2*t^7.91)/(g2^5*y) + (g2^12*t^8.06)/(g1^2*y) - (g1^4*t^8.32)/(g2^27*y) - t^8.47/(g2^10*y) + (g1^2*t^8.53)/(g2^16*y) - (g2^7*t^8.62)/(g1^4*y) + (g2*t^8.68)/(g1^2*y) + (3*g1^2*t^8.79)/(g2^11*y) + (2*g2^6*t^8.94)/(g1^2*y) - (t^4.15*y)/g2 - (g1^2*t^6.24*y)/g2^14 - (g2^3*t^6.38*y)/g1^2 - (g1^2*t^6.5*y)/g2^9 + (t^7.32*y)/g2^9 + (g1^4*t^7.44*y)/g2^21 + (t^7.59*y)/g2^4 + (g1^2*t^7.65*y)/g2^10 + (2*g2^7*t^7.79*y)/g1^2 + (2*g1^2*t^7.91*y)/g2^5 + (g2^12*t^8.06*y)/g1^2 - (g1^4*t^8.32*y)/g2^27 - (t^8.47*y)/g2^10 + (g1^2*t^8.53*y)/g2^16 - (g2^7*t^8.62*y)/g1^4 + (g2*t^8.68*y)/g1^2 + (3*g1^2*t^8.79*y)/g2^11 + (2*g2^6*t^8.94*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3489 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ + $ M_1M_8$ 0.622 0.7618 0.8165 [X:[1.6183], M:[0.8091, 1.2365, 0.7178, 1.1452, 0.3817, 0.8548, 0.7178, 1.1909], q:[0.4502, 0.7406], qb:[0.4046, 0.8777], phi:[0.3817]] 2*t^2.15 + t^2.56 + t^3.44 + 2*t^3.57 + 2*t^3.71 + t^3.98 + 3*t^4.31 + 2*t^4.72 + t^4.85 + t^5.13 + 2*t^5.59 + 3*t^5.73 + 2*t^5.86 - 2*t^6. - t^4.15/y - t^4.15*y detail
3488 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ + $ M_3^2$ + $ M_1X_2$ 0.5788 0.715 0.8095 [X:[1.5896, 1.3583], M:[0.6417, 1.1791, 1.0, 1.2313, 0.4104, 0.7687, 0.6939], q:[0.4478, 0.9104], qb:[0.3209, 0.6791], phi:[0.4104]] t^2.08 + t^2.31 + t^3. + t^3.16 + t^3.38 + 2*t^3.54 + t^3.69 + t^4.07 + t^4.16 + t^4.39 + t^4.61 + t^4.77 + t^5.08 + t^5.24 + t^5.31 + t^5.46 + t^5.62 + t^5.69 + t^5.78 + t^5.84 - t^6. - t^4.23/y - t^4.23*y detail
3486 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ + $ M_4M_7$ 0.6305 0.7796 0.8088 [X:[1.6024], M:[0.8192, 1.2048, 0.7711, 1.1928, 0.3976, 0.8072, 0.8072], q:[0.3976, 0.7832], qb:[0.4096, 0.8192], phi:[0.3976]] t^2.31 + 2*t^2.42 + t^2.46 + t^3.58 + 2*t^3.61 + 2*t^3.65 + t^4.63 + 2*t^4.74 + t^4.77 + t^4.81 + 3*t^4.84 + 2*t^4.88 + t^4.92 + t^5.89 + t^5.93 - t^6. - t^4.19/y - t^4.19*y detail
3490 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ + $ M_4M_8$ 0.6521 0.8149 0.8003 [X:[1.6135], M:[0.7821, 1.2269, 0.764, 1.1596, 0.3865, 0.8404, 0.7148, 0.8404], q:[0.4493, 0.7685], qb:[0.3911, 0.8449], phi:[0.3865]] t^2.14 + t^2.29 + t^2.35 + 2*t^2.52 + t^3.51 + 2*t^3.68 + t^3.88 + t^4.29 + t^4.44 + t^4.49 + t^4.58 + t^4.64 + 2*t^4.67 + t^4.69 + 2*t^4.81 + t^4.84 + 2*t^4.87 + 3*t^5.04 + t^5.65 + t^5.83 + t^5.85 + t^5.97 - 3*t^6. - t^4.16/y - t^4.16*y detail
3487 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ + $ M_7\phi_1q_1^2$ + $ M_7^2$ 0.5847 0.7249 0.8065 [X:[1.5852], M:[0.926, 1.1704, 0.7331, 1.2444, 0.4148, 0.7556, 1.0], q:[0.2926, 0.7813], qb:[0.463, 0.8039], phi:[0.4148]] t^2.2 + t^2.27 + t^2.78 + t^3. + t^3.29 + 2*t^3.51 + t^3.73 + t^4.02 + t^4.4 + t^4.47 + t^4.53 + t^4.76 + t^4.98 + t^5.05 + t^5.2 + t^5.27 + 2*t^5.56 + t^5.71 + 2*t^5.78 + t^5.93 - t^6. - t^4.24/y - t^4.24*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1884 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_2\tilde{q}_2$ + $ M_5X_1$ 0.6183 0.7529 0.8212 [X:[1.6154], M:[0.7932, 1.2309, 0.745, 1.1537, 0.3846, 0.8463], q:[0.4497, 0.757], qb:[0.3966, 0.8584], phi:[0.3846]] t^2.23 + t^2.38 + t^2.54 + t^3.46 + t^3.53 + 2*t^3.69 + t^3.85 + t^3.92 + t^4.47 + t^4.61 + t^4.76 + t^4.77 + t^4.85 + t^4.92 + t^5.08 + t^5.7 + t^5.91 + t^5.93 - 2*t^6. - t^4.15/y - t^4.15*y detail