Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
52586 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ | 0.6521 | 0.8149 | 0.8003 | [M:[1.1596, 0.764, 0.8404, 0.7821, 1.2269, 0.7148, 0.8404], q:[0.3911, 0.4493], qb:[0.8449, 0.7685], phi:[0.3865]] | [M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [2, 2], [-11, -13], [3, 3]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}q_{1}q_{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$ | ${}$ | -3 | t^2.144 + t^2.292 + t^2.346 + 2*t^2.521 + t^3.506 + 2*t^3.681 + t^3.883 + t^4.289 + t^4.436 + t^4.491 + t^4.584 + t^4.638 + 2*t^4.666 + t^4.693 + 2*t^4.813 + t^4.84 + 2*t^4.868 + 3*t^5.042 + t^5.65 + t^5.825 + t^5.852 + t^5.973 - 3*t^6. + 4*t^6.027 + 3*t^6.202 + t^6.229 + 2*t^6.404 + t^6.433 + t^6.581 + t^6.635 + t^6.728 + t^6.783 + 2*t^6.81 + t^6.837 + t^6.876 + t^6.93 + t^6.958 + t^6.985 + 3*t^7.012 + t^7.039 + 2*t^7.105 - t^7.16 + 4*t^7.187 + 2*t^7.214 + t^7.334 + t^7.362 + 3*t^7.389 - t^7.536 + 5*t^7.564 + t^7.766 + t^7.795 + t^7.97 + t^7.997 - 3*t^8.144 + 3*t^8.172 + t^8.199 + t^8.265 - 3*t^8.292 - 2*t^8.346 + 4*t^8.374 - 6*t^8.521 + 5*t^8.548 + t^8.576 + t^8.578 - t^8.696 + 4*t^8.723 + t^8.725 + 2*t^8.75 + t^8.78 + t^8.873 + 3*t^8.925 + t^8.927 + 2*t^8.954 + t^8.982 - t^4.16/y - t^6.304/y - t^6.452/y - t^6.506/y - t^6.681/y + t^7.436/y + t^7.491/y + (2*t^7.638)/y + (2*t^7.666)/y + (3*t^7.813)/y + (3*t^7.868)/y + t^8.015/y + t^8.042/y - t^8.448/y - t^8.596/y - t^8.743/y + t^8.825/y + t^8.973/y - t^4.16*y - t^6.304*y - t^6.452*y - t^6.506*y - t^6.681*y + t^7.436*y + t^7.491*y + 2*t^7.638*y + 2*t^7.666*y + 3*t^7.813*y + 3*t^7.868*y + t^8.015*y + t^8.042*y - t^8.448*y - t^8.596*y - t^8.743*y + t^8.825*y + t^8.973*y | t^2.144/(g1^11*g2^13) + g1^2*g2^4*t^2.292 + t^2.346/(g1^6*g2^8) + 2*g1^3*g2^3*t^2.521 + t^3.506/(g1^7*g2^9) + 2*g1^2*g2^2*t^3.681 + g1^7*g2^7*t^3.883 + t^4.289/(g1^22*g2^26) + t^4.436/(g1^9*g2^9) + t^4.491/(g1^17*g2^21) + g1^4*g2^8*t^4.584 + t^4.638/(g1^4*g2^4) + (2*t^4.666)/(g1^8*g2^10) + t^4.693/(g1^12*g2^16) + 2*g1^5*g2^7*t^4.813 + g1*g2*t^4.84 + (2*t^4.868)/(g1^3*g2^5) + 3*g1^6*g2^6*t^5.042 + t^5.65/(g1^18*g2^22) + t^5.825/(g1^9*g2^11) + t^5.852/(g1^13*g2^17) + g1^4*g2^6*t^5.973 - 3*t^6. + (4*t^6.027)/(g1^4*g2^6) + 3*g1^5*g2^5*t^6.202 + (g1*t^6.229)/g2 + 2*g1^10*g2^10*t^6.404 + t^6.433/(g1^33*g2^39) + t^6.581/(g1^20*g2^22) + t^6.635/(g1^28*g2^34) + t^6.728/(g1^7*g2^5) + t^6.783/(g1^15*g2^17) + (2*t^6.81)/(g1^19*g2^23) + t^6.837/(g1^23*g2^29) + g1^6*g2^12*t^6.876 + t^6.93/g1^2 + t^6.958/(g1^6*g2^6) + t^6.985/(g1^10*g2^12) + (3*t^7.012)/(g1^14*g2^18) + t^7.039/(g1^18*g2^24) + 2*g1^7*g2^11*t^7.105 - t^7.16/(g1*g2) + (4*t^7.187)/(g1^5*g2^7) + (2*t^7.214)/(g1^9*g2^13) + g1^8*g2^10*t^7.334 + g1^4*g2^4*t^7.362 + (3*t^7.389)/g2^2 - g1^13*g2^15*t^7.536 + 5*g1^9*g2^9*t^7.564 + g1^14*g2^14*t^7.766 + t^7.795/(g1^29*g2^35) + t^7.97/(g1^20*g2^24) + t^7.997/(g1^24*g2^30) - (3*t^8.144)/(g1^11*g2^13) + (3*t^8.172)/(g1^15*g2^19) + t^8.199/(g1^19*g2^25) + g1^6*g2^10*t^8.265 - 3*g1^2*g2^4*t^8.292 - (2*t^8.346)/(g1^6*g2^8) + (4*t^8.374)/(g1^10*g2^14) - 6*g1^3*g2^3*t^8.521 + (5*t^8.548)/(g1*g2^3) + t^8.576/(g1^5*g2^9) + t^8.578/(g1^44*g2^52) - g1^12*g2^14*t^8.696 + 4*g1^8*g2^8*t^8.723 + t^8.725/(g1^31*g2^35) + 2*g1^4*g2^2*t^8.75 + t^8.78/(g1^39*g2^47) + t^8.873/(g1^18*g2^18) + 3*g1^13*g2^13*t^8.925 + t^8.927/(g1^26*g2^30) + (2*t^8.954)/(g1^30*g2^36) + t^8.982/(g1^34*g2^42) - t^4.16/(g1*g2*y) - t^6.304/(g1^12*g2^14*y) - (g1*g2^3*t^6.452)/y - t^6.506/(g1^7*g2^9*y) - (g1^2*g2^2*t^6.681)/y + t^7.436/(g1^9*g2^9*y) + t^7.491/(g1^17*g2^21*y) + (2*t^7.638)/(g1^4*g2^4*y) + (2*t^7.666)/(g1^8*g2^10*y) + (3*g1^5*g2^7*t^7.813)/y + (3*t^7.868)/(g1^3*g2^5*y) + (g1^10*g2^12*t^8.015)/y + (g1^6*g2^6*t^8.042)/y - t^8.448/(g1^23*g2^27*y) - t^8.596/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.743)/y + t^8.825/(g1^9*g2^11*y) + (g1^4*g2^6*t^8.973)/y - (t^4.16*y)/(g1*g2) - (t^6.304*y)/(g1^12*g2^14) - g1*g2^3*t^6.452*y - (t^6.506*y)/(g1^7*g2^9) - g1^2*g2^2*t^6.681*y + (t^7.436*y)/(g1^9*g2^9) + (t^7.491*y)/(g1^17*g2^21) + (2*t^7.638*y)/(g1^4*g2^4) + (2*t^7.666*y)/(g1^8*g2^10) + 3*g1^5*g2^7*t^7.813*y + (3*t^7.868*y)/(g1^3*g2^5) + g1^10*g2^12*t^8.015*y + g1^6*g2^6*t^8.042*y - (t^8.448*y)/(g1^23*g2^27) - (t^8.596*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.743*y + (t^8.825*y)/(g1^9*g2^11) + g1^4*g2^6*t^8.973*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
56413 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}^{2}$ + ${ }M_{4}X_{1}$ | 0.5971 | 0.7479 | 0.7984 | [X:[1.3528], M:[1.2354, 1.0, 0.7646, 0.6472, 1.1764, 0.7062, 0.7646], q:[0.3236, 0.441], qb:[0.6764, 0.9118], phi:[0.4118]] | t^2.118 + 2*t^2.294 + t^3. + t^3.177 + t^3.352 + 2*t^3.529 + t^4.058 + t^4.237 + 2*t^4.412 + 3*t^4.588 + t^4.765 + t^5.118 + 2*t^5.294 + t^5.295 + 2*t^5.471 + 2*t^5.646 + t^5.648 + 3*t^5.823 - 2*t^6. - t^4.235/y - t^4.235*y | detail | |
56423 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{4}\phi_{1}q_{1}^{2}$ | 0.6514 | 0.8126 | 0.8016 | [M:[1.1596, 0.7394, 0.8404, 0.8067, 1.2269, 0.7394, 0.8404], q:[0.4034, 0.437], qb:[0.8572, 0.7563], phi:[0.3865]] | 2*t^2.218 + t^2.42 + 2*t^2.521 + t^3.58 + 2*t^3.681 + t^3.883 + 3*t^4.437 + 2*t^4.639 + 4*t^4.739 + 2*t^4.84 + 2*t^4.941 + 3*t^5.042 + t^5.798 + 2*t^5.899 - 2*t^6. - t^4.16/y - t^4.16*y | detail | |
56424 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}q_{2}\tilde{q}_{1}$ | 0.6727 | 0.8545 | 0.7872 | [M:[1.1541, 0.7556, 0.8459, 0.7831, 1.2306, 0.7066, 0.8459, 0.6928], q:[0.3916, 0.4544], qb:[0.8528, 0.7625], phi:[0.3847]] | t^2.079 + t^2.12 + t^2.267 + t^2.349 + 2*t^2.538 + t^3.503 + 2*t^3.692 + t^4.157 + t^4.198 + t^4.24 + t^4.345 + t^4.387 + t^4.428 + t^4.469 + t^4.534 + 3*t^4.616 + 2*t^4.658 + t^4.699 + 2*t^4.805 + t^4.846 + 2*t^4.887 + 3*t^5.076 + t^5.582 + t^5.623 + 2*t^5.77 + t^5.812 + t^5.853 + t^5.959 - 3*t^6. - t^4.154/y - t^4.154*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47025 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.6388 | 0.7919 | 0.8066 | [M:[1.147, 0.7449, 0.853, 0.7844, 1.2353, 0.696], q:[0.3922, 0.4608], qb:[0.8629, 0.7548], phi:[0.3823]] | t^2.088 + t^2.235 + t^2.353 + t^2.559 + t^3.441 + t^3.5 + 2*t^3.706 + t^3.971 + t^4.176 + t^4.323 + t^4.441 + t^4.469 + t^4.588 + t^4.647 + t^4.707 + t^4.794 + t^4.853 + t^4.912 + t^5.118 + t^5.529 + t^5.588 + t^5.676 + 2*t^5.794 + t^5.854 + t^5.941 - 2*t^6. - t^4.147/y - t^4.147*y | detail |