Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46978 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_7\phi_1^2$ + $ M_3^2$ | 0.7536 | 0.9338 | 0.807 | [X:[], M:[0.693, 0.8465, 1.0, 0.8465, 0.8465, 0.8465, 1.1535], q:[0.6535, 0.6535], qb:[0.5, 0.5], phi:[0.4233]] | [X:[], M:[[-4, -4, 0], [-4, 0, 1], [0, 0, 0], [0, -4, -1], [-4, 0, -1], [0, -4, 1], [2, 2, 0]], q:[[4, 0, 0], [0, 4, 0]], qb:[[0, 0, -1], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_5$, $ M_4$, $ M_2$, $ M_6$, $ M_3$, $ M_7$, $ M_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_4$, $ M_1M_5$, $ M_1M_6$, $ M_1M_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_4M_6$, $ M_1M_3$, $ M_2M_4$, $ M_5M_6$, $ M_5^2$, $ M_4^2$, $ M_4M_5$, $ M_2^2$, $ M_6^2$, $ M_2M_6$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_1M_7$ | $M_2M_7$, $ M_4M_7$, $ M_5M_7$, $ M_6M_7$ | -3 | t^2.08 + 4*t^2.54 + t^3. + t^3.46 + t^4.16 + 3*t^4.27 + 4*t^4.62 + 4*t^4.73 + 11*t^5.08 + 3*t^5.19 + t^5.54 - 3*t^6. + t^6.24 + 3*t^6.35 - 3*t^6.46 + 4*t^6.7 + 12*t^6.81 + 11*t^7.16 + 15*t^7.27 + 21*t^7.62 + 8*t^7.73 - 6*t^8.08 - 4*t^8.19 + t^8.32 + 3*t^8.43 - 16*t^8.54 - 4*t^8.65 + 4*t^8.78 + 12*t^8.89 - t^4.27/y - t^6.35/y - (4*t^6.81)/y + (4*t^7.62)/y + (4*t^7.73)/y + (7*t^8.08)/y + t^8.19/y - t^8.43/y + (5*t^8.54)/y - (4*t^8.89)/y - t^4.27*y - t^6.35*y - 4*t^6.81*y + 4*t^7.62*y + 4*t^7.73*y + 7*t^8.08*y + t^8.19*y - t^8.43*y + 5*t^8.54*y - 4*t^8.89*y | t^2.08/(g1^4*g2^4) + t^2.54/(g1^4*g3) + t^2.54/(g2^4*g3) + (g3*t^2.54)/g1^4 + (g3*t^2.54)/g2^4 + t^3. + g1^2*g2^2*t^3.46 + t^4.16/(g1^8*g2^8) + t^4.27/(g1*g2) + t^4.27/(g1*g2*g3^2) + (g3^2*t^4.27)/(g1*g2) + t^4.62/(g1^4*g2^8*g3) + t^4.62/(g1^8*g2^4*g3) + (g3*t^4.62)/(g1^4*g2^8) + (g3*t^4.62)/(g1^8*g2^4) + (g1^3*t^4.73)/(g2*g3) + (g2^3*t^4.73)/(g1*g3) + (g1^3*g3*t^4.73)/g2 + (g2^3*g3*t^4.73)/g1 + t^5.08/g1^8 + t^5.08/g2^8 + (3*t^5.08)/(g1^4*g2^4) + t^5.08/(g1^8*g3^2) + t^5.08/(g2^8*g3^2) + t^5.08/(g1^4*g2^4*g3^2) + (g3^2*t^5.08)/g1^8 + (g3^2*t^5.08)/g2^8 + (g3^2*t^5.08)/(g1^4*g2^4) + (g1^7*t^5.19)/g2 + g1^3*g2^3*t^5.19 + (g2^7*t^5.19)/g1 + t^5.54/(g1^2*g2^2) - 3*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - t^6./g3^2 + (g1^2*t^6.)/(g2^2*g3) + (g2^2*t^6.)/(g1^2*g3) + (g1^2*g3*t^6.)/g2^2 + (g2^2*g3*t^6.)/g1^2 - g3^2*t^6. + t^6.24/(g1^12*g2^12) + t^6.35/(g1^5*g2^5) + t^6.35/(g1^5*g2^5*g3^2) + (g3^2*t^6.35)/(g1^5*g2^5) + g1^2*g2^2*t^6.46 - (g1^4*t^6.46)/g3 - (g2^4*t^6.46)/g3 - g1^4*g3*t^6.46 - g2^4*g3*t^6.46 + t^6.7/(g1^8*g2^12*g3) + t^6.7/(g1^12*g2^8*g3) + (g3*t^6.7)/(g1^8*g2^12) + (g3*t^6.7)/(g1^12*g2^8) + t^6.81/(g1*g2^5*g3^3) + t^6.81/(g1^5*g2*g3^3) + (2*t^6.81)/(g1*g2^5*g3) + (2*t^6.81)/(g1^5*g2*g3) + (2*g3*t^6.81)/(g1*g2^5) + (2*g3*t^6.81)/(g1^5*g2) + (g3^3*t^6.81)/(g1*g2^5) + (g3^3*t^6.81)/(g1^5*g2) + t^7.16/(g1^4*g2^12) + (3*t^7.16)/(g1^8*g2^8) + t^7.16/(g1^12*g2^4) + t^7.16/(g1^4*g2^12*g3^2) + t^7.16/(g1^8*g2^8*g3^2) + t^7.16/(g1^12*g2^4*g3^2) + (g3^2*t^7.16)/(g1^4*g2^12) + (g3^2*t^7.16)/(g1^8*g2^8) + (g3^2*t^7.16)/(g1^12*g2^4) + (2*g1^3*t^7.27)/g2^5 + (3*t^7.27)/(g1*g2) + (2*g2^3*t^7.27)/g1^5 + (g1^3*t^7.27)/(g2^5*g3^2) + (2*t^7.27)/(g1*g2*g3^2) + (g2^3*t^7.27)/(g1^5*g3^2) + (g1^3*g3^2*t^7.27)/g2^5 + (2*g3^2*t^7.27)/(g1*g2) + (g2^3*g3^2*t^7.27)/g1^5 + t^7.62/(g1^6*g2^6) + t^7.62/(g1^12*g3^3) + t^7.62/(g2^12*g3^3) + t^7.62/(g1^4*g2^8*g3^3) + t^7.62/(g1^8*g2^4*g3^3) + t^7.62/(g1^12*g3) + t^7.62/(g2^12*g3) + (2*t^7.62)/(g1^4*g2^8*g3) + (2*t^7.62)/(g1^8*g2^4*g3) + (g3*t^7.62)/g1^12 + (g3*t^7.62)/g2^12 + (2*g3*t^7.62)/(g1^4*g2^8) + (2*g3*t^7.62)/(g1^8*g2^4) + (g3^3*t^7.62)/g1^12 + (g3^3*t^7.62)/g2^12 + (g3^3*t^7.62)/(g1^4*g2^8) + (g3^3*t^7.62)/(g1^8*g2^4) + (g1^7*t^7.73)/(g2^5*g3) + (g1^3*t^7.73)/(g2*g3) + (g2^3*t^7.73)/(g1*g3) + (g2^7*t^7.73)/(g1^5*g3) + (g1^7*g3*t^7.73)/g2^5 + (g1^3*g3*t^7.73)/g2 + (g2^3*g3*t^7.73)/g1 + (g2^7*g3*t^7.73)/g1^5 - t^8.08/g1^8 - t^8.08/g2^8 - (4*t^8.08)/(g1^4*g2^4) - (2*t^8.08)/(g1^4*g2^4*g3^2) + t^8.08/(g1^2*g2^6*g3) + t^8.08/(g1^6*g2^2*g3) + (g3*t^8.08)/(g1^2*g2^6) + (g3*t^8.08)/(g1^6*g2^2) - (2*g3^2*t^8.08)/(g1^4*g2^4) - 2*g1^3*g2^3*t^8.19 - (g1^3*g2^3*t^8.19)/g3^2 - g1^3*g2^3*g3^2*t^8.19 + t^8.32/(g1^16*g2^16) + t^8.43/(g1^9*g2^9) + t^8.43/(g1^9*g2^9*g3^2) + (g3^2*t^8.43)/(g1^9*g2^9) + (g1^2*t^8.54)/g2^6 + (4*t^8.54)/(g1^2*g2^2) + (g2^2*t^8.54)/g1^6 + t^8.54/(g1^2*g2^2*g3^4) - t^8.54/(g1^4*g3^3) - t^8.54/(g2^4*g3^3) + (g1^2*t^8.54)/(g2^6*g3^2) + (2*t^8.54)/(g1^2*g2^2*g3^2) + (g2^2*t^8.54)/(g1^6*g3^2) - (6*t^8.54)/(g1^4*g3) - (g1^4*t^8.54)/(g2^8*g3) - (6*t^8.54)/(g2^4*g3) - (g2^4*t^8.54)/(g1^8*g3) - (6*g3*t^8.54)/g1^4 - (g1^4*g3*t^8.54)/g2^8 - (6*g3*t^8.54)/g2^4 - (g2^4*g3*t^8.54)/g1^8 + (g1^2*g3^2*t^8.54)/g2^6 + (2*g3^2*t^8.54)/(g1^2*g2^2) + (g2^2*g3^2*t^8.54)/g1^6 - (g3^3*t^8.54)/g1^4 - (g3^3*t^8.54)/g2^4 + (g3^4*t^8.54)/(g1^2*g2^2) - (g1^7*g2^3*t^8.65)/g3 - (g1^3*g2^7*t^8.65)/g3 - g1^7*g2^3*g3*t^8.65 - g1^3*g2^7*g3*t^8.65 + t^8.78/(g1^12*g2^16*g3) + t^8.78/(g1^16*g2^12*g3) + (g3*t^8.78)/(g1^12*g2^16) + (g3*t^8.78)/(g1^16*g2^12) + t^8.89/(g1^5*g2^9*g3^3) + t^8.89/(g1^9*g2^5*g3^3) + (2*t^8.89)/(g1^5*g2^9*g3) + (2*t^8.89)/(g1^9*g2^5*g3) + (2*g3*t^8.89)/(g1^5*g2^9) + (2*g3*t^8.89)/(g1^9*g2^5) + (g3^3*t^8.89)/(g1^5*g2^9) + (g3^3*t^8.89)/(g1^9*g2^5) - t^4.27/(g1*g2*y) - t^6.35/(g1^5*g2^5*y) - t^6.81/(g1*g2^5*g3*y) - t^6.81/(g1^5*g2*g3*y) - (g3*t^6.81)/(g1*g2^5*y) - (g3*t^6.81)/(g1^5*g2*y) + t^7.62/(g1^4*g2^8*g3*y) + t^7.62/(g1^8*g2^4*g3*y) + (g3*t^7.62)/(g1^4*g2^8*y) + (g3*t^7.62)/(g1^8*g2^4*y) + (g1^3*t^7.73)/(g2*g3*y) + (g2^3*t^7.73)/(g1*g3*y) + (g1^3*g3*t^7.73)/(g2*y) + (g2^3*g3*t^7.73)/(g1*y) + t^8.08/(g1^8*y) + t^8.08/(g2^8*y) + (3*t^8.08)/(g1^4*g2^4*y) + t^8.08/(g1^4*g2^4*g3^2*y) + (g3^2*t^8.08)/(g1^4*g2^4*y) + (g1^3*g2^3*t^8.19)/y - t^8.43/(g1^9*g2^9*y) + t^8.54/(g1^2*g2^2*y) + t^8.54/(g1^4*g3*y) + t^8.54/(g2^4*g3*y) + (g3*t^8.54)/(g1^4*y) + (g3*t^8.54)/(g2^4*y) - t^8.89/(g1^5*g2^9*g3*y) - t^8.89/(g1^9*g2^5*g3*y) - (g3*t^8.89)/(g1^5*g2^9*y) - (g3*t^8.89)/(g1^9*g2^5*y) - (t^4.27*y)/(g1*g2) - (t^6.35*y)/(g1^5*g2^5) - (t^6.81*y)/(g1*g2^5*g3) - (t^6.81*y)/(g1^5*g2*g3) - (g3*t^6.81*y)/(g1*g2^5) - (g3*t^6.81*y)/(g1^5*g2) + (t^7.62*y)/(g1^4*g2^8*g3) + (t^7.62*y)/(g1^8*g2^4*g3) + (g3*t^7.62*y)/(g1^4*g2^8) + (g3*t^7.62*y)/(g1^8*g2^4) + (g1^3*t^7.73*y)/(g2*g3) + (g2^3*t^7.73*y)/(g1*g3) + (g1^3*g3*t^7.73*y)/g2 + (g2^3*g3*t^7.73*y)/g1 + (t^8.08*y)/g1^8 + (t^8.08*y)/g2^8 + (3*t^8.08*y)/(g1^4*g2^4) + (t^8.08*y)/(g1^4*g2^4*g3^2) + (g3^2*t^8.08*y)/(g1^4*g2^4) + g1^3*g2^3*t^8.19*y - (t^8.43*y)/(g1^9*g2^9) + (t^8.54*y)/(g1^2*g2^2) + (t^8.54*y)/(g1^4*g3) + (t^8.54*y)/(g2^4*g3) + (g3*t^8.54*y)/g1^4 + (g3*t^8.54*y)/g2^4 - (t^8.89*y)/(g1^5*g2^9*g3) - (t^8.89*y)/(g1^9*g2^5*g3) - (g3*t^8.89*y)/(g1^5*g2^9) - (g3*t^8.89*y)/(g1^9*g2^5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
50988 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_7\phi_1^2$ + $ M_3^2$ + $ M_1M_4$ | 0.706 | 0.8681 | 0.8132 | [X:[], M:[0.9248, 0.8495, 1.0, 1.0752, 0.9583, 0.9665, 1.0376], q:[0.5961, 0.4791], qb:[0.5544, 0.4456], phi:[0.4812]] | t^2.55 + t^2.77 + t^2.87 + t^2.9 + t^3. + t^3.11 + t^3.23 + t^4.12 + t^4.22 + t^4.32 + t^4.44 + t^4.54 + t^4.57 + t^4.67 + t^4.77 + t^4.9 + t^5.02 + t^5.1 + t^5.32 + t^5.42 + t^5.45 + t^5.55 + t^5.66 + t^5.75 + 2*t^5.77 + t^5.8 + t^5.89 + t^5.99 - 2*t^6. - t^4.44/y - t^4.44*y | detail | |
53101 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_7\phi_1^2$ + $ M_3^2$ + $ M_2M_5$ | 0.7287 | 0.8998 | 0.8098 | [X:[], M:[0.809, 1.0, 1.0, 0.809, 1.0, 0.809, 1.0955], q:[0.5, 0.691], qb:[0.5, 0.5], phi:[0.4523]] | 3*t^2.43 + 3*t^3. + t^3.29 + 6*t^4.36 + 6*t^4.85 + 3*t^4.93 + 6*t^5.43 + t^5.5 + 3*t^5.71 - 4*t^6. - t^4.36/y - t^4.36*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46622 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_7\phi_1^2$ | 0.7904 | 0.9838 | 0.8034 | [X:[], M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619, 0.7619, 1.2381], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] | 6*t^2.29 + t^3.71 + 21*t^4.57 + 10*t^4.86 - 10*t^6. - t^4.14/y - t^4.14*y | detail | {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, M6: 16/21, M7: 26/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21} |