Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
832 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ 0.7536 0.9338 0.807 [M:[0.8465, 1.1535, 0.8465, 0.8465, 0.8465, 1.0, 0.693], q:[0.6535, 0.5], qb:[0.5, 0.6535], phi:[0.4233]] [M:[[-4, 1, 0], [2, 0, 2], [0, -1, -4], [-4, -1, 0], [0, 1, -4], [0, 0, 0], [-4, 0, -4]], q:[[4, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 4]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{7}$ ${}M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$ -3 t^2.079 + 4*t^2.54 + t^3. + t^3.46 + t^4.158 + 3*t^4.27 + 4*t^4.619 + 4*t^4.73 + 11*t^5.079 + 3*t^5.191 + t^5.54 - 3*t^6. + t^6.237 + 3*t^6.349 - 3*t^6.46 + 4*t^6.698 + 12*t^6.809 + 11*t^7.158 + 15*t^7.27 + 21*t^7.619 + 8*t^7.73 - 6*t^8.079 - 4*t^8.191 + t^8.316 + 3*t^8.428 - 16*t^8.54 - 4*t^8.651 + 4*t^8.777 + 12*t^8.888 - t^4.27/y - t^6.349/y - (4*t^6.809)/y + (4*t^7.619)/y + (4*t^7.73)/y + (7*t^8.079)/y + t^8.191/y - t^8.428/y + (5*t^8.54)/y - (4*t^8.888)/y - t^4.27*y - t^6.349*y - 4*t^6.809*y + 4*t^7.619*y + 4*t^7.73*y + 7*t^8.079*y + t^8.191*y - t^8.428*y + 5*t^8.54*y - 4*t^8.888*y t^2.079/(g1^4*g3^4) + t^2.54/(g1^4*g2) + (g2*t^2.54)/g1^4 + t^2.54/(g2*g3^4) + (g2*t^2.54)/g3^4 + t^3. + g1^2*g3^2*t^3.46 + t^4.158/(g1^8*g3^8) + t^4.27/(g1*g3) + t^4.27/(g1*g2^2*g3) + (g2^2*t^4.27)/(g1*g3) + t^4.619/(g1^4*g2*g3^8) + (g2*t^4.619)/(g1^4*g3^8) + t^4.619/(g1^8*g2*g3^4) + (g2*t^4.619)/(g1^8*g3^4) + (g1^3*t^4.73)/(g2*g3) + (g1^3*g2*t^4.73)/g3 + (g3^3*t^4.73)/(g1*g2) + (g2*g3^3*t^4.73)/g1 + t^5.079/g1^8 + t^5.079/(g1^8*g2^2) + (g2^2*t^5.079)/g1^8 + t^5.079/g3^8 + t^5.079/(g2^2*g3^8) + (g2^2*t^5.079)/g3^8 + (3*t^5.079)/(g1^4*g3^4) + t^5.079/(g1^4*g2^2*g3^4) + (g2^2*t^5.079)/(g1^4*g3^4) + (g1^7*t^5.191)/g3 + g1^3*g3^3*t^5.191 + (g3^7*t^5.191)/g1 + t^5.54/(g1^2*g3^2) - 3*t^6. - t^6./g2^2 - g2^2*t^6. - (g1^4*t^6.)/g3^4 + (g1^2*t^6.)/(g2*g3^2) + (g1^2*g2*t^6.)/g3^2 + (g3^2*t^6.)/(g1^2*g2) + (g2*g3^2*t^6.)/g1^2 - (g3^4*t^6.)/g1^4 + t^6.237/(g1^12*g3^12) + t^6.349/(g1^5*g3^5) + t^6.349/(g1^5*g2^2*g3^5) + (g2^2*t^6.349)/(g1^5*g3^5) - (g1^4*t^6.46)/g2 - g1^4*g2*t^6.46 + g1^2*g3^2*t^6.46 - (g3^4*t^6.46)/g2 - g2*g3^4*t^6.46 + t^6.698/(g1^8*g2*g3^12) + (g2*t^6.698)/(g1^8*g3^12) + t^6.698/(g1^12*g2*g3^8) + (g2*t^6.698)/(g1^12*g3^8) + t^6.809/(g1*g2^3*g3^5) + (2*t^6.809)/(g1*g2*g3^5) + (2*g2*t^6.809)/(g1*g3^5) + (g2^3*t^6.809)/(g1*g3^5) + t^6.809/(g1^5*g2^3*g3) + (2*t^6.809)/(g1^5*g2*g3) + (2*g2*t^6.809)/(g1^5*g3) + (g2^3*t^6.809)/(g1^5*g3) + t^7.158/(g1^4*g3^12) + t^7.158/(g1^4*g2^2*g3^12) + (g2^2*t^7.158)/(g1^4*g3^12) + (3*t^7.158)/(g1^8*g3^8) + t^7.158/(g1^8*g2^2*g3^8) + (g2^2*t^7.158)/(g1^8*g3^8) + t^7.158/(g1^12*g3^4) + t^7.158/(g1^12*g2^2*g3^4) + (g2^2*t^7.158)/(g1^12*g3^4) + (2*g1^3*t^7.27)/g3^5 + (g1^3*t^7.27)/(g2^2*g3^5) + (g1^3*g2^2*t^7.27)/g3^5 + (3*t^7.27)/(g1*g3) + (2*t^7.27)/(g1*g2^2*g3) + (2*g2^2*t^7.27)/(g1*g3) + (2*g3^3*t^7.27)/g1^5 + (g3^3*t^7.27)/(g1^5*g2^2) + (g2^2*g3^3*t^7.27)/g1^5 + t^7.619/(g1^12*g2^3) + t^7.619/(g1^12*g2) + (g2*t^7.619)/g1^12 + (g2^3*t^7.619)/g1^12 + t^7.619/(g2^3*g3^12) + t^7.619/(g2*g3^12) + (g2*t^7.619)/g3^12 + (g2^3*t^7.619)/g3^12 + t^7.619/(g1^4*g2^3*g3^8) + (2*t^7.619)/(g1^4*g2*g3^8) + (2*g2*t^7.619)/(g1^4*g3^8) + (g2^3*t^7.619)/(g1^4*g3^8) + t^7.619/(g1^6*g3^6) + t^7.619/(g1^8*g2^3*g3^4) + (2*t^7.619)/(g1^8*g2*g3^4) + (2*g2*t^7.619)/(g1^8*g3^4) + (g2^3*t^7.619)/(g1^8*g3^4) + (g1^7*t^7.73)/(g2*g3^5) + (g1^7*g2*t^7.73)/g3^5 + (g1^3*t^7.73)/(g2*g3) + (g1^3*g2*t^7.73)/g3 + (g3^3*t^7.73)/(g1*g2) + (g2*g3^3*t^7.73)/g1 + (g3^7*t^7.73)/(g1^5*g2) + (g2*g3^7*t^7.73)/g1^5 - t^8.079/g1^8 - t^8.079/g3^8 + t^8.079/(g1^2*g2*g3^6) + (g2*t^8.079)/(g1^2*g3^6) - (4*t^8.079)/(g1^4*g3^4) - (2*t^8.079)/(g1^4*g2^2*g3^4) - (2*g2^2*t^8.079)/(g1^4*g3^4) + t^8.079/(g1^6*g2*g3^2) + (g2*t^8.079)/(g1^6*g3^2) - 2*g1^3*g3^3*t^8.191 - (g1^3*g3^3*t^8.191)/g2^2 - g1^3*g2^2*g3^3*t^8.191 + t^8.316/(g1^16*g3^16) + t^8.428/(g1^9*g3^9) + t^8.428/(g1^9*g2^2*g3^9) + (g2^2*t^8.428)/(g1^9*g3^9) - t^8.54/(g1^4*g2^3) - (6*t^8.54)/(g1^4*g2) - (6*g2*t^8.54)/g1^4 - (g2^3*t^8.54)/g1^4 - (g1^4*t^8.54)/(g2*g3^8) - (g1^4*g2*t^8.54)/g3^8 + (g1^2*t^8.54)/g3^6 + (g1^2*t^8.54)/(g2^2*g3^6) + (g1^2*g2^2*t^8.54)/g3^6 - t^8.54/(g2^3*g3^4) - (6*t^8.54)/(g2*g3^4) - (6*g2*t^8.54)/g3^4 - (g2^3*t^8.54)/g3^4 + (4*t^8.54)/(g1^2*g3^2) + t^8.54/(g1^2*g2^4*g3^2) + (2*t^8.54)/(g1^2*g2^2*g3^2) + (2*g2^2*t^8.54)/(g1^2*g3^2) + (g2^4*t^8.54)/(g1^2*g3^2) + (g3^2*t^8.54)/g1^6 + (g3^2*t^8.54)/(g1^6*g2^2) + (g2^2*g3^2*t^8.54)/g1^6 - (g3^4*t^8.54)/(g1^8*g2) - (g2*g3^4*t^8.54)/g1^8 - (g1^7*g3^3*t^8.651)/g2 - g1^7*g2*g3^3*t^8.651 - (g1^3*g3^7*t^8.651)/g2 - g1^3*g2*g3^7*t^8.651 + t^8.777/(g1^12*g2*g3^16) + (g2*t^8.777)/(g1^12*g3^16) + t^8.777/(g1^16*g2*g3^12) + (g2*t^8.777)/(g1^16*g3^12) + t^8.888/(g1^5*g2^3*g3^9) + (2*t^8.888)/(g1^5*g2*g3^9) + (2*g2*t^8.888)/(g1^5*g3^9) + (g2^3*t^8.888)/(g1^5*g3^9) + t^8.888/(g1^9*g2^3*g3^5) + (2*t^8.888)/(g1^9*g2*g3^5) + (2*g2*t^8.888)/(g1^9*g3^5) + (g2^3*t^8.888)/(g1^9*g3^5) - t^4.27/(g1*g3*y) - t^6.349/(g1^5*g3^5*y) - t^6.809/(g1*g2*g3^5*y) - (g2*t^6.809)/(g1*g3^5*y) - t^6.809/(g1^5*g2*g3*y) - (g2*t^6.809)/(g1^5*g3*y) + t^7.619/(g1^4*g2*g3^8*y) + (g2*t^7.619)/(g1^4*g3^8*y) + t^7.619/(g1^8*g2*g3^4*y) + (g2*t^7.619)/(g1^8*g3^4*y) + (g1^3*t^7.73)/(g2*g3*y) + (g1^3*g2*t^7.73)/(g3*y) + (g3^3*t^7.73)/(g1*g2*y) + (g2*g3^3*t^7.73)/(g1*y) + t^8.079/(g1^8*y) + t^8.079/(g3^8*y) + (3*t^8.079)/(g1^4*g3^4*y) + t^8.079/(g1^4*g2^2*g3^4*y) + (g2^2*t^8.079)/(g1^4*g3^4*y) + (g1^3*g3^3*t^8.191)/y - t^8.428/(g1^9*g3^9*y) + t^8.54/(g1^4*g2*y) + (g2*t^8.54)/(g1^4*y) + t^8.54/(g2*g3^4*y) + (g2*t^8.54)/(g3^4*y) + t^8.54/(g1^2*g3^2*y) - t^8.888/(g1^5*g2*g3^9*y) - (g2*t^8.888)/(g1^5*g3^9*y) - t^8.888/(g1^9*g2*g3^5*y) - (g2*t^8.888)/(g1^9*g3^5*y) - (t^4.27*y)/(g1*g3) - (t^6.349*y)/(g1^5*g3^5) - (t^6.809*y)/(g1*g2*g3^5) - (g2*t^6.809*y)/(g1*g3^5) - (t^6.809*y)/(g1^5*g2*g3) - (g2*t^6.809*y)/(g1^5*g3) + (t^7.619*y)/(g1^4*g2*g3^8) + (g2*t^7.619*y)/(g1^4*g3^8) + (t^7.619*y)/(g1^8*g2*g3^4) + (g2*t^7.619*y)/(g1^8*g3^4) + (g1^3*t^7.73*y)/(g2*g3) + (g1^3*g2*t^7.73*y)/g3 + (g3^3*t^7.73*y)/(g1*g2) + (g2*g3^3*t^7.73*y)/g1 + (t^8.079*y)/g1^8 + (t^8.079*y)/g3^8 + (3*t^8.079*y)/(g1^4*g3^4) + (t^8.079*y)/(g1^4*g2^2*g3^4) + (g2^2*t^8.079*y)/(g1^4*g3^4) + g1^3*g3^3*t^8.191*y - (t^8.428*y)/(g1^9*g3^9) + (t^8.54*y)/(g1^4*g2) + (g2*t^8.54*y)/g1^4 + (t^8.54*y)/(g2*g3^4) + (g2*t^8.54*y)/g3^4 + (t^8.54*y)/(g1^2*g3^2) - (t^8.888*y)/(g1^5*g2*g3^9) - (g2*t^8.888*y)/(g1^5*g3^9) - (t^8.888*y)/(g1^9*g2*g3^5) - (g2*t^8.888*y)/(g1^9*g3^5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1316 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{7}$ 0.706 0.8681 0.8132 [M:[1.0752, 1.0376, 0.8495, 0.9665, 0.9583, 1.0, 0.9248], q:[0.4791, 0.4456], qb:[0.5544, 0.5961], phi:[0.4812]] t^2.549 + t^2.774 + t^2.875 + t^2.899 + t^3. + t^3.113 + t^3.226 + t^4.117 + t^4.218 + t^4.318 + t^4.444 + t^4.544 + t^4.569 + t^4.669 + t^4.77 + t^4.895 + t^5.02 + t^5.097 + t^5.323 + t^5.423 + t^5.448 + t^5.549 + t^5.661 + t^5.75 + 2*t^5.774 + t^5.799 + t^5.887 + t^5.988 - 2*t^6. - t^4.444/y - t^4.444*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
534 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ 0.7331 0.8939 0.8201 [M:[0.8539, 1.1461, 0.8539, 0.8539, 0.8539, 1.0], q:[0.6461, 0.5], qb:[0.5, 0.6461], phi:[0.427]] 4*t^2.562 + t^3. + t^3.438 + t^3.876 + 3*t^4.281 + 4*t^4.719 + 10*t^5.124 + 3*t^5.157 - 3*t^6. - t^4.281/y - t^4.281*y detail