Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1860 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ | 0.7308 | 0.9549 | 0.7653 | [X:[], M:[0.6897, 0.6897, 0.6897, 0.6897, 0.6897, 0.6897], q:[0.8276, 0.8276], qb:[0.4827, 0.4827], phi:[0.3449]] | [X:[], M:[[-2, -2], [1, -5], [-5, 1], [-5, 1], [-2, -2], [1, -5]], q:[[-1, 2], [2, -1]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_6$, $ M_1$, $ M_5$, $ \phi_1^2$, $ M_3$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_2^2$, $ M_2M_6$, $ M_6^2$, $ M_1M_2$, $ M_2M_5$, $ M_1M_6$, $ M_5M_6$, $ M_2\phi_1^2$, $ M_6\phi_1^2$, $ M_1^2$, $ M_2M_3$, $ M_2M_4$, $ M_1M_5$, $ M_5^2$, $ M_3M_6$, $ M_4M_6$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1M_3$, $ M_1M_4$, $ M_3M_5$, $ M_4M_5$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ | $M_1q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$ | -2 | 7*t^2.07 + t^2.9 + t^3.93 + 28*t^4.14 + 8*t^4.97 + t^5.79 - 2*t^6. + 84*t^6.21 + t^6.83 + 27*t^7.03 - 34*t^8.07 + 210*t^8.28 + t^8.69 - 9*t^8.9 - t^4.03/y - (7*t^6.1)/y + (21*t^7.14)/y + (14*t^7.97)/y - (28*t^8.17)/y - t^4.03*y - 7*t^6.1*y + 21*t^7.14*y + 14*t^7.97*y - 28*t^8.17*y | (2*g1*t^2.07)/g2^5 + (3*t^2.07)/(g1^2*g2^2) + (2*g2*t^2.07)/g1^5 + g1^3*g2^3*t^2.9 + g1^2*g2^2*t^3.93 + (3*g1^2*t^4.14)/g2^10 + (6*t^4.14)/(g1*g2^7) + (10*t^4.14)/(g1^4*g2^4) + (6*t^4.14)/(g1^7*g2) + (3*g2^2*t^4.14)/g1^10 + (2*g1^4*t^4.97)/g2^2 + 4*g1*g2*t^4.97 + (2*g2^4*t^4.97)/g1^2 + g1^6*g2^6*t^5.79 - 2*t^6. + (9*t^6.21)/g1^12 + (4*g1^3*t^6.21)/g2^15 + (9*t^6.21)/g2^12 + (18*t^6.21)/(g1^3*g2^9) + (22*t^6.21)/(g1^6*g2^6) + (18*t^6.21)/(g1^9*g2^3) + (4*g2^3*t^6.21)/g1^15 + g1^5*g2^5*t^6.83 + (3*g1^5*t^7.03)/g2^7 + (6*g1^2*t^7.03)/g2^4 + (9*t^7.03)/(g1*g2) + (6*g2^2*t^7.03)/g1^4 + (3*g2^5*t^7.03)/g1^7 - (g1^4*t^8.07)/g2^8 - (10*g1*t^8.07)/g2^5 - (12*t^8.07)/(g1^2*g2^2) - (10*g2*t^8.07)/g1^5 - (g2^4*t^8.07)/g1^8 + (5*g1^4*t^8.28)/g2^20 + (12*g1*t^8.28)/g2^17 + (26*t^8.28)/(g1^2*g2^14) + (38*t^8.28)/(g1^5*g2^11) + (48*t^8.28)/(g1^8*g2^8) + (38*t^8.28)/(g1^11*g2^5) + (26*t^8.28)/(g1^14*g2^2) + (12*g2*t^8.28)/g1^17 + (5*g2^4*t^8.28)/g1^20 + g1^9*g2^9*t^8.69 - 2*g1^6*t^8.9 - 5*g1^3*g2^3*t^8.9 - 2*g2^6*t^8.9 - t^4.03/(g1*g2*y) - (2*t^6.1)/(g1^6*y) - (2*t^6.1)/(g2^6*y) - (3*t^6.1)/(g1^3*g2^3*y) + (g1^2*t^7.14)/(g2^10*y) + (6*t^7.14)/(g1*g2^7*y) + (7*t^7.14)/(g1^4*g2^4*y) + (6*t^7.14)/(g1^7*g2*y) + (g2^2*t^7.14)/(g1^10*y) + (4*g1^4*t^7.97)/(g2^2*y) + (6*g1*g2*t^7.97)/y + (4*g2^4*t^7.97)/(g1^2*y) - (3*g1*t^8.17)/(g2^11*y) - (6*t^8.17)/(g1^2*g2^8*y) - (10*t^8.17)/(g1^5*g2^5*y) - (6*t^8.17)/(g1^8*g2^2*y) - (3*g2*t^8.17)/(g1^11*y) - (t^4.03*y)/(g1*g2) - (2*t^6.1*y)/g1^6 - (2*t^6.1*y)/g2^6 - (3*t^6.1*y)/(g1^3*g2^3) + (g1^2*t^7.14*y)/g2^10 + (6*t^7.14*y)/(g1*g2^7) + (7*t^7.14*y)/(g1^4*g2^4) + (6*t^7.14*y)/(g1^7*g2) + (g2^2*t^7.14*y)/g1^10 + (4*g1^4*t^7.97*y)/g2^2 + 6*g1*g2*t^7.97*y + (4*g2^4*t^7.97*y)/g1^2 - (3*g1*t^8.17*y)/g2^11 - (6*t^8.17*y)/(g1^2*g2^8) - (10*t^8.17*y)/(g1^5*g2^5) - (6*t^8.17*y)/(g1^8*g2^2) - (3*g2*t^8.17*y)/g1^11 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
489 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ | 0.7101 | 0.9148 | 0.7763 | [X:[], M:[0.6925, 0.6976, 0.6874, 0.6874, 0.6925], q:[0.8243, 0.8294], qb:[0.4832, 0.4781], phi:[0.3463]] | 2*t^2.06 + 3*t^2.08 + t^2.09 + t^2.88 + t^3.91 + t^3.92 + 3*t^4.12 + 6*t^4.14 + 8*t^4.16 + 3*t^4.17 + t^4.19 + 2*t^4.95 + 4*t^4.96 + t^4.98 + t^5.77 + 2*t^5.97 + 3*t^5.98 - t^6. - t^4.04/y - t^4.04*y | detail |