Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1764 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_6q_2\tilde{q}_2$ 0.6895 0.8748 0.7882 [X:[], M:[0.6997, 1.3043, 0.6997, 0.6875, 0.6916, 0.6916], q:[0.82, 0.8322], qb:[0.4803, 0.4762], phi:[0.3478]] [X:[], M:[[1, -4, -1], [0, 2, 2], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [-1, 0, -3]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_6$, $ M_5$, $ M_3$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4M_6$, $ M_4M_5$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_3M_4$, $ M_1M_4$, $ M_1M_5$, $ M_3M_6$, $ M_3M_5$, $ M_1M_6$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_4q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_2M_4$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_6$, $ M_3q_1\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ . -3 t^2.06 + 2*t^2.07 + 2*t^2.1 + t^2.87 + t^3.89 + 2*t^3.91 + t^4.13 + 2*t^4.14 + 3*t^4.15 + 2*t^4.16 + 4*t^4.17 + 3*t^4.2 + t^4.93 + 2*t^4.94 + t^4.96 + 2*t^4.97 + t^5.74 + t^5.95 + 2*t^5.96 + t^5.98 + 4*t^5.99 - 3*t^6. + 2*t^6.01 - t^6.02 + t^6.19 + 2*t^6.2 + 3*t^6.21 + 6*t^6.22 + 4*t^6.24 + 6*t^6.25 + 3*t^6.26 + 6*t^6.27 + 4*t^6.3 + t^6.76 + 2*t^6.78 + t^6.99 + 2*t^7.01 + 3*t^7.02 + 2*t^7.03 + 2*t^7.04 + 2*t^7.07 + t^7.78 + 2*t^7.8 + t^7.83 - t^7.85 + t^8.01 + 2*t^8.03 + 4*t^8.04 + 2*t^8.05 + 3*t^8.06 - 6*t^8.07 + 3*t^8.09 - 8*t^8.1 + 2*t^8.11 - 2*t^8.12 + t^8.25 + 2*t^8.26 + 3*t^8.27 + 6*t^8.29 + 9*t^8.3 + 6*t^8.31 + 11*t^8.32 + 6*t^8.34 + 9*t^8.35 + 4*t^8.36 + 8*t^8.37 + 5*t^8.4 + t^8.61 + t^8.82 + 2*t^8.83 + t^8.85 + 2*t^8.86 - 3*t^8.87 - 2*t^8.89 - t^4.04/y - t^6.11/y - (2*t^6.12)/y - (2*t^6.14)/y + (2*t^7.14)/y + t^7.15/y + (2*t^7.16)/y + (4*t^7.17)/y + t^7.2/y + t^7.93/y + (4*t^7.94)/y + (4*t^7.97)/y + t^7.98/y - t^8.17/y - (2*t^8.18)/y - (3*t^8.19)/y - (2*t^8.21)/y - (4*t^8.22)/y - (3*t^8.24)/y + t^8.95/y + (2*t^8.96)/y + (2*t^8.98)/y + (6*t^8.99)/y - t^4.04*y - t^6.11*y - 2*t^6.12*y - 2*t^6.14*y + 2*t^7.14*y + t^7.15*y + 2*t^7.16*y + 4*t^7.17*y + t^7.2*y + t^7.93*y + 4*t^7.94*y + 4*t^7.97*y + t^7.98*y - t^8.17*y - 2*t^8.18*y - 3*t^8.19*y - 2*t^8.21*y - 4*t^8.22*y - 3*t^8.24*y + t^8.95*y + 2*t^8.96*y + 2*t^8.98*y + 6*t^8.99*y t^2.06/(g1*g2^3) + t^2.07/(g1*g3^3) + (g3*t^2.07)/g2^5 + (g2*t^2.1)/g3^5 + (g1*t^2.1)/(g2^4*g3) + g2^3*g3^3*t^2.87 + (g2*g3^4*t^3.89)/g1 + 2*g2^2*g3^2*t^3.91 + t^4.13/(g1^2*g2^6) + t^4.14/(g1^2*g2^3*g3^3) + (g3*t^4.14)/(g1*g2^8) + t^4.15/(g1^2*g3^6) + t^4.15/(g1*g2^5*g3^2) + (g3^2*t^4.15)/g2^10 + t^4.16/(g1*g2^2*g3^5) + t^4.16/(g2^7*g3) + (g1*t^4.17)/g2^9 + (g2*t^4.17)/(g1*g3^8) + (2*t^4.17)/(g2^4*g3^4) + (g2^2*t^4.2)/g3^10 + (g1*t^4.2)/(g2^3*g3^6) + (g1^2*t^4.2)/(g2^8*g3^2) + (g3^3*t^4.93)/g1 + (g2^3*t^4.94)/g1 + (g3^4*t^4.94)/g2^2 + g2*g3*t^4.96 + (g2^4*t^4.97)/g3^2 + (g1*g3^2*t^4.97)/g2 + g2^6*g3^6*t^5.74 + (g3^4*t^5.95)/(g1^2*g2^2) + (g2*g3*t^5.96)/g1^2 + (g3^5*t^5.96)/(g1*g2^4) + (g3^2*t^5.98)/(g1*g2) + (2*g2^2*t^5.99)/(g1*g3) + (2*g3^3*t^5.99)/g2^3 - 3*t^6. + (g2^3*t^6.01)/g3^3 + (g1*g3*t^6.01)/g2^2 - (g1*g2*t^6.02)/g3^2 + t^6.19/(g1^3*g2^9) + t^6.2/(g1^3*g2^6*g3^3) + (g3*t^6.2)/(g1^2*g2^11) + t^6.21/(g1^3*g2^3*g3^6) + t^6.21/(g1^2*g2^8*g3^2) + (g3^2*t^6.21)/(g1*g2^13) + t^6.22/(g1^3*g3^9) + (2*t^6.22)/(g1^2*g2^5*g3^5) + (2*t^6.22)/(g1*g2^10*g3) + (g3^3*t^6.22)/g2^15 + t^6.24/g2^12 + t^6.24/(g1^2*g2^2*g3^8) + (2*t^6.24)/(g1*g2^7*g3^4) + (g2*t^6.25)/(g1^2*g3^11) + (2*t^6.25)/(g1*g2^4*g3^7) + (2*t^6.25)/(g2^9*g3^3) + (g1*g3*t^6.25)/g2^14 + t^6.26/(g1*g2*g3^10) + t^6.26/(g2^6*g3^6) + (g1*t^6.26)/(g2^11*g3^2) + (g2^2*t^6.27)/(g1*g3^13) + (2*t^6.27)/(g2^3*g3^9) + (2*g1*t^6.27)/(g2^8*g3^5) + (g1^2*t^6.27)/(g2^13*g3) + (g2^3*t^6.3)/g3^15 + (g1*t^6.3)/(g2^2*g3^11) + (g1^2*t^6.3)/(g2^7*g3^7) + (g1^3*t^6.3)/(g2^12*g3^3) + (g2^4*g3^7*t^6.76)/g1 + 2*g2^5*g3^5*t^6.78 + (g3^3*t^6.99)/(g1^2*g2^3) + t^7.01/g1^2 + (g3^4*t^7.01)/(g1*g2^5) + (g2^3*t^7.02)/(g1^2*g3^3) + (g3*t^7.02)/(g1*g2^2) + (g3^5*t^7.02)/g2^7 + (g2*t^7.03)/(g1*g3^2) + (g3^2*t^7.03)/g2^4 + (g2^4*t^7.04)/(g1*g3^5) + (g1*g3^3*t^7.04)/g2^6 + (g2^5*t^7.07)/g3^7 + (g1^2*g3*t^7.07)/g2^5 + (g2^2*g3^8*t^7.78)/g1^2 + (2*g2^3*g3^6*t^7.8)/g1 + g2^4*g3^4*t^7.83 - g1*g2^5*g3^2*t^7.85 + (g3^4*t^8.01)/(g1^3*g2^5) + (g3*t^8.03)/(g1^3*g2^2) + (g3^5*t^8.03)/(g1^2*g2^7) + (g2*t^8.04)/(g1^3*g3^2) + (2*g3^2*t^8.04)/(g1^2*g2^4) + (g3^6*t^8.04)/(g1*g2^9) + t^8.05/(g1^2*g2*g3) + (g3^3*t^8.05)/(g1*g2^6) - t^8.06/(g1*g2^3) + (2*g2^2*t^8.06)/(g1^2*g3^4) + (2*g3^4*t^8.06)/g2^8 - (3*t^8.07)/(g1*g3^3) - (3*g3*t^8.07)/g2^5 + (g2^3*t^8.09)/(g1*g3^6) + t^8.09/(g2^2*g3^2) + (g1*g3^2*t^8.09)/g2^7 - (4*g2*t^8.1)/g3^5 - (4*g1*t^8.1)/(g2^4*g3) + (g1^2*t^8.11)/g2^6 + (g2^4*t^8.11)/g3^8 - (g1*g2^2*t^8.12)/g3^7 - (g1^2*t^8.12)/(g2^3*g3^3) + t^8.25/(g1^4*g2^12) + t^8.26/(g1^4*g2^9*g3^3) + (g3*t^8.26)/(g1^3*g2^14) + t^8.27/(g1^4*g2^6*g3^6) + t^8.27/(g1^3*g2^11*g3^2) + (g3^2*t^8.27)/(g1^2*g2^16) + t^8.29/(g1^4*g2^3*g3^9) + (2*t^8.29)/(g1^3*g2^8*g3^5) + (2*t^8.29)/(g1^2*g2^13*g3) + (g3^3*t^8.29)/(g1*g2^18) + (2*t^8.3)/(g1*g2^15) + t^8.3/(g1^4*g3^12) + (2*t^8.3)/(g1^3*g2^5*g3^8) + (3*t^8.3)/(g1^2*g2^10*g3^4) + (g3^4*t^8.3)/g2^20 + t^8.31/(g1^3*g2^2*g3^11) + (2*t^8.31)/(g1^2*g2^7*g3^7) + (2*t^8.31)/(g1*g2^12*g3^3) + (g3*t^8.31)/g2^17 + (g2*t^8.32)/(g1^3*g3^14) + (3*t^8.32)/(g1^2*g2^4*g3^10) + (3*t^8.32)/(g1*g2^9*g3^6) + (3*t^8.32)/(g2^14*g3^2) + (g1*g3^2*t^8.32)/g2^19 + t^8.34/(g1^2*g2*g3^13) + (2*t^8.34)/(g1*g2^6*g3^9) + (2*t^8.34)/(g2^11*g3^5) + (g1*t^8.34)/(g2^16*g3) + (g1^2*t^8.35)/g2^18 + (g2^2*t^8.35)/(g1^2*g3^16) + (2*t^8.35)/(g1*g2^3*g3^12) + (3*t^8.35)/(g2^8*g3^8) + (2*g1*t^8.35)/(g2^13*g3^4) + t^8.36/(g1*g3^15) + t^8.36/(g2^5*g3^11) + (g1*t^8.36)/(g2^10*g3^7) + (g1^2*t^8.36)/(g2^15*g3^3) + (g2^3*t^8.37)/(g1*g3^18) + (2*t^8.37)/(g2^2*g3^14) + (2*g1*t^8.37)/(g2^7*g3^10) + (2*g1^2*t^8.37)/(g2^12*g3^6) + (g1^3*t^8.37)/(g2^17*g3^2) + (g2^4*t^8.4)/g3^20 + (g1*t^8.4)/(g2*g3^16) + (g1^2*t^8.4)/(g2^6*g3^12) + (g1^3*t^8.4)/(g2^11*g3^8) + (g1^4*t^8.4)/(g2^16*g3^4) + g2^9*g3^9*t^8.61 + (g2*g3^7*t^8.82)/g1^2 + (g2^4*g3^4*t^8.83)/g1^2 + (g3^8*t^8.83)/(g1*g2) + (g2^2*g3^5*t^8.85)/g1 + (g2^5*g3^2*t^8.86)/g1 + g3^6*t^8.86 - 3*g2^3*g3^3*t^8.87 - 2*g1*g2^4*g3*t^8.89 - t^4.04/(g2*g3*y) - t^6.11/(g1*g2^4*g3*y) - t^6.12/(g2^6*y) - t^6.12/(g1*g2*g3^4*y) - t^6.14/(g3^6*y) - (g1*t^6.14)/(g2^5*g3^2*y) + t^7.14/(g1^2*g2^3*g3^3*y) + (g3*t^7.14)/(g1*g2^8*y) + t^7.15/(g1*g2^5*g3^2*y) + t^7.16/(g1*g2^2*g3^5*y) + t^7.16/(g2^7*g3*y) + (g1*t^7.17)/(g2^9*y) + (g2*t^7.17)/(g1*g3^8*y) + (2*t^7.17)/(g2^4*g3^4*y) + (g1*t^7.2)/(g2^3*g3^6*y) + (g3^3*t^7.93)/(g1*y) + (2*g2^3*t^7.94)/(g1*y) + (2*g3^4*t^7.94)/(g2^2*y) + (2*g2^4*t^7.97)/(g3^2*y) + (2*g1*g3^2*t^7.97)/(g2*y) + (g1*g2^2*t^7.98)/(g3*y) - t^8.17/(g1^2*g2^7*g3*y) - t^8.18/(g1*g2^9*y) - t^8.18/(g1^2*g2^4*g3^4*y) - t^8.19/(g1^2*g2*g3^7*y) - t^8.19/(g1*g2^6*g3^3*y) - (g3*t^8.19)/(g2^11*y) - t^8.21/(g1*g2^3*g3^6*y) - t^8.21/(g2^8*g3^2*y) - t^8.22/(g1*g3^9*y) - (2*t^8.22)/(g2^5*g3^5*y) - (g1*t^8.22)/(g2^10*g3*y) - (g2*t^8.24)/(g3^11*y) - (g1*t^8.24)/(g2^4*g3^7*y) - (g1^2*t^8.24)/(g2^9*g3^3*y) + (g3^4*t^8.95)/(g1^2*g2^2*y) + (g2*g3*t^8.96)/(g1^2*y) + (g3^5*t^8.96)/(g1*g2^4*y) + (2*g3^2*t^8.98)/(g1*g2*y) + (3*g2^2*t^8.99)/(g1*g3*y) + (3*g3^3*t^8.99)/(g2^3*y) - (t^4.04*y)/(g2*g3) - (t^6.11*y)/(g1*g2^4*g3) - (t^6.12*y)/g2^6 - (t^6.12*y)/(g1*g2*g3^4) - (t^6.14*y)/g3^6 - (g1*t^6.14*y)/(g2^5*g3^2) + (t^7.14*y)/(g1^2*g2^3*g3^3) + (g3*t^7.14*y)/(g1*g2^8) + (t^7.15*y)/(g1*g2^5*g3^2) + (t^7.16*y)/(g1*g2^2*g3^5) + (t^7.16*y)/(g2^7*g3) + (g1*t^7.17*y)/g2^9 + (g2*t^7.17*y)/(g1*g3^8) + (2*t^7.17*y)/(g2^4*g3^4) + (g1*t^7.2*y)/(g2^3*g3^6) + (g3^3*t^7.93*y)/g1 + (2*g2^3*t^7.94*y)/g1 + (2*g3^4*t^7.94*y)/g2^2 + (2*g2^4*t^7.97*y)/g3^2 + (2*g1*g3^2*t^7.97*y)/g2 + (g1*g2^2*t^7.98*y)/g3 - (t^8.17*y)/(g1^2*g2^7*g3) - (t^8.18*y)/(g1*g2^9) - (t^8.18*y)/(g1^2*g2^4*g3^4) - (t^8.19*y)/(g1^2*g2*g3^7) - (t^8.19*y)/(g1*g2^6*g3^3) - (g3*t^8.19*y)/g2^11 - (t^8.21*y)/(g1*g2^3*g3^6) - (t^8.21*y)/(g2^8*g3^2) - (t^8.22*y)/(g1*g3^9) - (2*t^8.22*y)/(g2^5*g3^5) - (g1*t^8.22*y)/(g2^10*g3) - (g2*t^8.24*y)/g3^11 - (g1*t^8.24*y)/(g2^4*g3^7) - (g1^2*t^8.24*y)/(g2^9*g3^3) + (g3^4*t^8.95*y)/(g1^2*g2^2) + (g2*g3*t^8.96*y)/g1^2 + (g3^5*t^8.96*y)/(g1*g2^4) + (2*g3^2*t^8.98*y)/(g1*g2) + (3*g2^2*t^8.99*y)/(g1*g3) + (3*g3^3*t^8.99*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
283 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ 0.6689 0.8351 0.801 [X:[], M:[0.6951, 1.3008, 0.7072, 0.6951, 0.6911], q:[0.8252, 0.8252], qb:[0.4797, 0.4716], phi:[0.3496]] t^2.07 + 2*t^2.09 + t^2.12 + t^2.85 + 2*t^3.89 + 2*t^3.9 + t^4.15 + 2*t^4.16 + 3*t^4.17 + t^4.2 + 2*t^4.21 + t^4.24 + t^4.93 + 2*t^4.94 + t^4.95 + t^4.98 + t^5.71 + 2*t^5.96 + 5*t^5.98 + 2*t^5.99 - 3*t^6. - t^4.05/y - t^4.05*y detail