Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1764 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ | 0.6895 | 0.8748 | 0.7882 | [M:[0.6997, 1.3043, 0.6997, 0.6875, 0.6916, 0.6916], q:[0.82, 0.8322], qb:[0.4803, 0.4762], phi:[0.3478]] | [M:[[1, -4, -1], [0, 2, 2], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [-1, 0, -3]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.063 + 2*t^2.075 + 2*t^2.099 + t^2.87 + t^3.889 + 2*t^3.913 + t^4.125 + 2*t^4.137 + 3*t^4.149 + 2*t^4.162 + 4*t^4.174 + 3*t^4.198 + t^4.932 + 2*t^4.944 + t^4.957 + 2*t^4.969 + t^5.739 + t^5.951 + 2*t^5.963 + t^5.976 + 4*t^5.988 - 3*t^6. + 2*t^6.012 - t^6.024 + t^6.188 + 2*t^6.2 + 3*t^6.212 + 6*t^6.224 + 4*t^6.236 + 6*t^6.249 + 3*t^6.261 + 6*t^6.273 + 4*t^6.298 + t^6.758 + 2*t^6.783 + t^6.995 + 2*t^7.007 + 3*t^7.019 + 2*t^7.031 + 2*t^7.043 + 2*t^7.068 + t^7.777 + 2*t^7.802 + t^7.826 - t^7.851 + t^8.014 + 2*t^8.026 + 4*t^8.038 + 2*t^8.05 + 3*t^8.063 - 6*t^8.075 + 3*t^8.087 - 8*t^8.099 + 2*t^8.111 - 2*t^8.124 + t^8.25 + 2*t^8.262 + 3*t^8.275 + 6*t^8.287 + 9*t^8.299 + 6*t^8.311 + 11*t^8.323 + 6*t^8.336 + 9*t^8.348 + 4*t^8.36 + 8*t^8.372 + 5*t^8.397 + t^8.609 + t^8.821 + 2*t^8.833 + t^8.845 + 2*t^8.857 - 3*t^8.87 - 2*t^8.894 - t^4.043/y - t^6.106/y - (2*t^6.118)/y - (2*t^6.143)/y + (2*t^7.137)/y + t^7.149/y + (2*t^7.162)/y + (4*t^7.174)/y + t^7.198/y + t^7.932/y + (4*t^7.944)/y + (4*t^7.969)/y + t^7.981/y - t^8.169/y - (2*t^8.181)/y - (3*t^8.193)/y - (2*t^8.205)/y - (4*t^8.217)/y - (3*t^8.242)/y + t^8.951/y + (2*t^8.963)/y + (2*t^8.976)/y + (6*t^8.988)/y - t^4.043*y - t^6.106*y - 2*t^6.118*y - 2*t^6.143*y + 2*t^7.137*y + t^7.149*y + 2*t^7.162*y + 4*t^7.174*y + t^7.198*y + t^7.932*y + 4*t^7.944*y + 4*t^7.969*y + t^7.981*y - t^8.169*y - 2*t^8.181*y - 3*t^8.193*y - 2*t^8.205*y - 4*t^8.217*y - 3*t^8.242*y + t^8.951*y + 2*t^8.963*y + 2*t^8.976*y + 6*t^8.988*y | t^2.063/(g1*g2^3) + t^2.075/(g1*g3^3) + (g3*t^2.075)/g2^5 + (g2*t^2.099)/g3^5 + (g1*t^2.099)/(g2^4*g3) + g2^3*g3^3*t^2.87 + (g2*g3^4*t^3.889)/g1 + 2*g2^2*g3^2*t^3.913 + t^4.125/(g1^2*g2^6) + t^4.137/(g1^2*g2^3*g3^3) + (g3*t^4.137)/(g1*g2^8) + t^4.149/(g1^2*g3^6) + t^4.149/(g1*g2^5*g3^2) + (g3^2*t^4.149)/g2^10 + t^4.162/(g1*g2^2*g3^5) + t^4.162/(g2^7*g3) + (g1*t^4.174)/g2^9 + (g2*t^4.174)/(g1*g3^8) + (2*t^4.174)/(g2^4*g3^4) + (g2^2*t^4.198)/g3^10 + (g1*t^4.198)/(g2^3*g3^6) + (g1^2*t^4.198)/(g2^8*g3^2) + (g3^3*t^4.932)/g1 + (g2^3*t^4.944)/g1 + (g3^4*t^4.944)/g2^2 + g2*g3*t^4.957 + (g2^4*t^4.969)/g3^2 + (g1*g3^2*t^4.969)/g2 + g2^6*g3^6*t^5.739 + (g3^4*t^5.951)/(g1^2*g2^2) + (g2*g3*t^5.963)/g1^2 + (g3^5*t^5.963)/(g1*g2^4) + (g3^2*t^5.976)/(g1*g2) + (2*g2^2*t^5.988)/(g1*g3) + (2*g3^3*t^5.988)/g2^3 - 3*t^6. + (g2^3*t^6.012)/g3^3 + (g1*g3*t^6.012)/g2^2 - (g1*g2*t^6.024)/g3^2 + t^6.188/(g1^3*g2^9) + t^6.2/(g1^3*g2^6*g3^3) + (g3*t^6.2)/(g1^2*g2^11) + t^6.212/(g1^3*g2^3*g3^6) + t^6.212/(g1^2*g2^8*g3^2) + (g3^2*t^6.212)/(g1*g2^13) + t^6.224/(g1^3*g3^9) + (2*t^6.224)/(g1^2*g2^5*g3^5) + (2*t^6.224)/(g1*g2^10*g3) + (g3^3*t^6.224)/g2^15 + t^6.236/g2^12 + t^6.236/(g1^2*g2^2*g3^8) + (2*t^6.236)/(g1*g2^7*g3^4) + (g2*t^6.249)/(g1^2*g3^11) + (2*t^6.249)/(g1*g2^4*g3^7) + (2*t^6.249)/(g2^9*g3^3) + (g1*g3*t^6.249)/g2^14 + t^6.261/(g1*g2*g3^10) + t^6.261/(g2^6*g3^6) + (g1*t^6.261)/(g2^11*g3^2) + (g2^2*t^6.273)/(g1*g3^13) + (2*t^6.273)/(g2^3*g3^9) + (2*g1*t^6.273)/(g2^8*g3^5) + (g1^2*t^6.273)/(g2^13*g3) + (g2^3*t^6.298)/g3^15 + (g1*t^6.298)/(g2^2*g3^11) + (g1^2*t^6.298)/(g2^7*g3^7) + (g1^3*t^6.298)/(g2^12*g3^3) + (g2^4*g3^7*t^6.758)/g1 + 2*g2^5*g3^5*t^6.783 + (g3^3*t^6.995)/(g1^2*g2^3) + t^7.007/g1^2 + (g3^4*t^7.007)/(g1*g2^5) + (g2^3*t^7.019)/(g1^2*g3^3) + (g3*t^7.019)/(g1*g2^2) + (g3^5*t^7.019)/g2^7 + (g2*t^7.031)/(g1*g3^2) + (g3^2*t^7.031)/g2^4 + (g2^4*t^7.043)/(g1*g3^5) + (g1*g3^3*t^7.043)/g2^6 + (g2^5*t^7.068)/g3^7 + (g1^2*g3*t^7.068)/g2^5 + (g2^2*g3^8*t^7.777)/g1^2 + (2*g2^3*g3^6*t^7.802)/g1 + g2^4*g3^4*t^7.826 - g1*g2^5*g3^2*t^7.851 + (g3^4*t^8.014)/(g1^3*g2^5) + (g3*t^8.026)/(g1^3*g2^2) + (g3^5*t^8.026)/(g1^2*g2^7) + (g2*t^8.038)/(g1^3*g3^2) + (2*g3^2*t^8.038)/(g1^2*g2^4) + (g3^6*t^8.038)/(g1*g2^9) + t^8.05/(g1^2*g2*g3) + (g3^3*t^8.05)/(g1*g2^6) - t^8.063/(g1*g2^3) + (2*g2^2*t^8.063)/(g1^2*g3^4) + (2*g3^4*t^8.063)/g2^8 - (3*t^8.075)/(g1*g3^3) - (3*g3*t^8.075)/g2^5 + (g2^3*t^8.087)/(g1*g3^6) + t^8.087/(g2^2*g3^2) + (g1*g3^2*t^8.087)/g2^7 - (4*g2*t^8.099)/g3^5 - (4*g1*t^8.099)/(g2^4*g3) + (g1^2*t^8.111)/g2^6 + (g2^4*t^8.111)/g3^8 - (g1*g2^2*t^8.124)/g3^7 - (g1^2*t^8.124)/(g2^3*g3^3) + t^8.25/(g1^4*g2^12) + t^8.262/(g1^4*g2^9*g3^3) + (g3*t^8.262)/(g1^3*g2^14) + t^8.275/(g1^4*g2^6*g3^6) + t^8.275/(g1^3*g2^11*g3^2) + (g3^2*t^8.275)/(g1^2*g2^16) + t^8.287/(g1^4*g2^3*g3^9) + (2*t^8.287)/(g1^3*g2^8*g3^5) + (2*t^8.287)/(g1^2*g2^13*g3) + (g3^3*t^8.287)/(g1*g2^18) + (2*t^8.299)/(g1*g2^15) + t^8.299/(g1^4*g3^12) + (2*t^8.299)/(g1^3*g2^5*g3^8) + (3*t^8.299)/(g1^2*g2^10*g3^4) + (g3^4*t^8.299)/g2^20 + t^8.311/(g1^3*g2^2*g3^11) + (2*t^8.311)/(g1^2*g2^7*g3^7) + (2*t^8.311)/(g1*g2^12*g3^3) + (g3*t^8.311)/g2^17 + (g2*t^8.323)/(g1^3*g3^14) + (3*t^8.323)/(g1^2*g2^4*g3^10) + (3*t^8.323)/(g1*g2^9*g3^6) + (3*t^8.323)/(g2^14*g3^2) + (g1*g3^2*t^8.323)/g2^19 + t^8.336/(g1^2*g2*g3^13) + (2*t^8.336)/(g1*g2^6*g3^9) + (2*t^8.336)/(g2^11*g3^5) + (g1*t^8.336)/(g2^16*g3) + (g1^2*t^8.348)/g2^18 + (g2^2*t^8.348)/(g1^2*g3^16) + (2*t^8.348)/(g1*g2^3*g3^12) + (3*t^8.348)/(g2^8*g3^8) + (2*g1*t^8.348)/(g2^13*g3^4) + t^8.36/(g1*g3^15) + t^8.36/(g2^5*g3^11) + (g1*t^8.36)/(g2^10*g3^7) + (g1^2*t^8.36)/(g2^15*g3^3) + (g2^3*t^8.372)/(g1*g3^18) + (2*t^8.372)/(g2^2*g3^14) + (2*g1*t^8.372)/(g2^7*g3^10) + (2*g1^2*t^8.372)/(g2^12*g3^6) + (g1^3*t^8.372)/(g2^17*g3^2) + (g2^4*t^8.397)/g3^20 + (g1*t^8.397)/(g2*g3^16) + (g1^2*t^8.397)/(g2^6*g3^12) + (g1^3*t^8.397)/(g2^11*g3^8) + (g1^4*t^8.397)/(g2^16*g3^4) + g2^9*g3^9*t^8.609 + (g2*g3^7*t^8.821)/g1^2 + (g2^4*g3^4*t^8.833)/g1^2 + (g3^8*t^8.833)/(g1*g2) + (g2^2*g3^5*t^8.845)/g1 + (g2^5*g3^2*t^8.857)/g1 + g3^6*t^8.857 - 3*g2^3*g3^3*t^8.87 - 2*g1*g2^4*g3*t^8.894 - t^4.043/(g2*g3*y) - t^6.106/(g1*g2^4*g3*y) - t^6.118/(g2^6*y) - t^6.118/(g1*g2*g3^4*y) - t^6.143/(g3^6*y) - (g1*t^6.143)/(g2^5*g3^2*y) + t^7.137/(g1^2*g2^3*g3^3*y) + (g3*t^7.137)/(g1*g2^8*y) + t^7.149/(g1*g2^5*g3^2*y) + t^7.162/(g1*g2^2*g3^5*y) + t^7.162/(g2^7*g3*y) + (g1*t^7.174)/(g2^9*y) + (g2*t^7.174)/(g1*g3^8*y) + (2*t^7.174)/(g2^4*g3^4*y) + (g1*t^7.198)/(g2^3*g3^6*y) + (g3^3*t^7.932)/(g1*y) + (2*g2^3*t^7.944)/(g1*y) + (2*g3^4*t^7.944)/(g2^2*y) + (2*g2^4*t^7.969)/(g3^2*y) + (2*g1*g3^2*t^7.969)/(g2*y) + (g1*g2^2*t^7.981)/(g3*y) - t^8.169/(g1^2*g2^7*g3*y) - t^8.181/(g1*g2^9*y) - t^8.181/(g1^2*g2^4*g3^4*y) - t^8.193/(g1^2*g2*g3^7*y) - t^8.193/(g1*g2^6*g3^3*y) - (g3*t^8.193)/(g2^11*y) - t^8.205/(g1*g2^3*g3^6*y) - t^8.205/(g2^8*g3^2*y) - t^8.217/(g1*g3^9*y) - (2*t^8.217)/(g2^5*g3^5*y) - (g1*t^8.217)/(g2^10*g3*y) - (g2*t^8.242)/(g3^11*y) - (g1*t^8.242)/(g2^4*g3^7*y) - (g1^2*t^8.242)/(g2^9*g3^3*y) + (g3^4*t^8.951)/(g1^2*g2^2*y) + (g2*g3*t^8.963)/(g1^2*y) + (g3^5*t^8.963)/(g1*g2^4*y) + (2*g3^2*t^8.976)/(g1*g2*y) + (3*g2^2*t^8.988)/(g1*g3*y) + (3*g3^3*t^8.988)/(g2^3*y) - (t^4.043*y)/(g2*g3) - (t^6.106*y)/(g1*g2^4*g3) - (t^6.118*y)/g2^6 - (t^6.118*y)/(g1*g2*g3^4) - (t^6.143*y)/g3^6 - (g1*t^6.143*y)/(g2^5*g3^2) + (t^7.137*y)/(g1^2*g2^3*g3^3) + (g3*t^7.137*y)/(g1*g2^8) + (t^7.149*y)/(g1*g2^5*g3^2) + (t^7.162*y)/(g1*g2^2*g3^5) + (t^7.162*y)/(g2^7*g3) + (g1*t^7.174*y)/g2^9 + (g2*t^7.174*y)/(g1*g3^8) + (2*t^7.174*y)/(g2^4*g3^4) + (g1*t^7.198*y)/(g2^3*g3^6) + (g3^3*t^7.932*y)/g1 + (2*g2^3*t^7.944*y)/g1 + (2*g3^4*t^7.944*y)/g2^2 + (2*g2^4*t^7.969*y)/g3^2 + (2*g1*g3^2*t^7.969*y)/g2 + (g1*g2^2*t^7.981*y)/g3 - (t^8.169*y)/(g1^2*g2^7*g3) - (t^8.181*y)/(g1*g2^9) - (t^8.181*y)/(g1^2*g2^4*g3^4) - (t^8.193*y)/(g1^2*g2*g3^7) - (t^8.193*y)/(g1*g2^6*g3^3) - (g3*t^8.193*y)/g2^11 - (t^8.205*y)/(g1*g2^3*g3^6) - (t^8.205*y)/(g2^8*g3^2) - (t^8.217*y)/(g1*g3^9) - (2*t^8.217*y)/(g2^5*g3^5) - (g1*t^8.217*y)/(g2^10*g3) - (g2*t^8.242*y)/g3^11 - (g1*t^8.242*y)/(g2^4*g3^7) - (g1^2*t^8.242*y)/(g2^9*g3^3) + (g3^4*t^8.951*y)/(g1^2*g2^2) + (g2*g3*t^8.963*y)/g1^2 + (g3^5*t^8.963*y)/(g1*g2^4) + (2*g3^2*t^8.976*y)/(g1*g2) + (3*g2^2*t^8.988*y)/(g1*g3) + (3*g3^3*t^8.988*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
283 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6689 | 0.8351 | 0.801 | [M:[0.6951, 1.3008, 0.7072, 0.6951, 0.6911], q:[0.8252, 0.8252], qb:[0.4797, 0.4716], phi:[0.3496]] | t^2.073 + 2*t^2.085 + t^2.122 + t^2.854 + 2*t^3.89 + 2*t^3.902 + t^4.147 + 2*t^4.159 + 3*t^4.171 + t^4.195 + 2*t^4.207 + t^4.243 + t^4.927 + 2*t^4.939 + t^4.951 + t^4.975 + t^5.707 + 2*t^5.964 + 5*t^5.976 + 2*t^5.988 - 3*t^6. - t^4.049/y - t^4.049*y | detail |