Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2307 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_6$ + $ M_4M_6$ + $ M_6M_7$ + $ M_8q_1\tilde{q}_2$ | 0.6895 | 0.8748 | 0.7882 | [X:[], M:[0.6875, 1.3043, 0.6997, 0.6997, 0.6916, 1.3003, 0.6997, 0.6916], q:[0.8322, 0.82], qb:[0.4803, 0.4762], phi:[0.3478]] | [X:[], M:[[-8, 4], [2, 2], [1, -5], [1, -5], [-5, 1], [-1, 5], [1, -5], [-5, 1]], q:[[5, -4], [-4, 5]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_5$, $ M_8$, $ M_4$, $ M_7$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_5$, $ M_1M_8$, $ M_5^2$, $ M_5M_8$, $ M_8^2$, $ M_1M_4$, $ M_1M_7$, $ M_4M_5$, $ M_5M_7$, $ M_4M_8$, $ M_7M_8$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_8\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_1M_2$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_2M_8$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_8\phi_1\tilde{q}_1\tilde{q}_2$ | . | -3 | t^2.06 + 2*t^2.07 + 2*t^2.1 + t^2.87 + t^3.89 + 2*t^3.91 + t^4.13 + 2*t^4.14 + 3*t^4.15 + 2*t^4.16 + 4*t^4.17 + 3*t^4.2 + t^4.93 + 2*t^4.94 + t^4.96 + 2*t^4.97 + t^5.74 + t^5.95 + 2*t^5.96 + t^5.98 + 4*t^5.99 - 3*t^6. + 2*t^6.01 - t^6.02 + t^6.19 + 2*t^6.2 + 3*t^6.21 + 6*t^6.22 + 4*t^6.24 + 6*t^6.25 + 3*t^6.26 + 6*t^6.27 + 4*t^6.3 + t^6.76 + 2*t^6.78 + t^6.99 + 2*t^7.01 + 3*t^7.02 + 2*t^7.03 + 2*t^7.04 + 2*t^7.07 + t^7.78 + 2*t^7.8 + t^7.83 - t^7.85 + t^8.01 + 2*t^8.03 + 4*t^8.04 + 2*t^8.05 + 3*t^8.06 - 6*t^8.07 + 3*t^8.09 - 8*t^8.1 + 2*t^8.11 - 2*t^8.12 + t^8.25 + 2*t^8.26 + 3*t^8.27 + 6*t^8.29 + 9*t^8.3 + 6*t^8.31 + 11*t^8.32 + 6*t^8.34 + 9*t^8.35 + 4*t^8.36 + 8*t^8.37 + 5*t^8.4 + t^8.61 + t^8.82 + 2*t^8.83 + t^8.85 + 2*t^8.86 - 3*t^8.87 - 2*t^8.89 - t^4.04/y - t^6.11/y - (2*t^6.12)/y - (2*t^6.14)/y + (2*t^7.14)/y + t^7.15/y + (2*t^7.16)/y + (4*t^7.17)/y + t^7.2/y + t^7.93/y + (4*t^7.94)/y + (4*t^7.97)/y + t^7.98/y - t^8.17/y - (2*t^8.18)/y - (3*t^8.19)/y - (2*t^8.21)/y - (4*t^8.22)/y - (3*t^8.24)/y + t^8.95/y + (2*t^8.96)/y + (2*t^8.98)/y + (6*t^8.99)/y - t^4.04*y - t^6.11*y - 2*t^6.12*y - 2*t^6.14*y + 2*t^7.14*y + t^7.15*y + 2*t^7.16*y + 4*t^7.17*y + t^7.2*y + t^7.93*y + 4*t^7.94*y + 4*t^7.97*y + t^7.98*y - t^8.17*y - 2*t^8.18*y - 3*t^8.19*y - 2*t^8.21*y - 4*t^8.22*y - 3*t^8.24*y + t^8.95*y + 2*t^8.96*y + 2*t^8.98*y + 6*t^8.99*y | (g2^4*t^2.06)/g1^8 + (2*g2*t^2.07)/g1^5 + (2*g1*t^2.1)/g2^5 + g1^3*g2^3*t^2.87 + (g2^8*t^3.89)/g1^4 + 2*g1^2*g2^2*t^3.91 + (g2^8*t^4.13)/g1^16 + (2*g2^5*t^4.14)/g1^13 + (3*g2^2*t^4.15)/g1^10 + (2*t^4.16)/(g1^7*g2) + (4*t^4.17)/(g1^4*g2^4) + (3*g1^2*t^4.2)/g2^10 + (g2^7*t^4.93)/g1^5 + (2*g2^4*t^4.94)/g1^2 + g1*g2*t^4.96 + (2*g1^4*t^4.97)/g2^2 + g1^6*g2^6*t^5.74 + (g2^12*t^5.95)/g1^12 + (2*g2^9*t^5.96)/g1^9 + (g2^6*t^5.98)/g1^6 + (4*g2^3*t^5.99)/g1^3 - 3*t^6. + (2*g1^3*t^6.01)/g2^3 - (g1^6*t^6.02)/g2^6 + (g2^12*t^6.19)/g1^24 + (2*g2^9*t^6.2)/g1^21 + (3*g2^6*t^6.21)/g1^18 + (6*g2^3*t^6.22)/g1^15 + (4*t^6.24)/g1^12 + (6*t^6.25)/(g1^9*g2^3) + (3*t^6.26)/(g1^6*g2^6) + (6*t^6.27)/(g1^3*g2^9) + (4*g1^3*t^6.3)/g2^15 + (g2^11*t^6.76)/g1 + 2*g1^5*g2^5*t^6.78 + (g2^11*t^6.99)/g1^13 + (2*g2^8*t^7.01)/g1^10 + (3*g2^5*t^7.02)/g1^7 + (2*g2^2*t^7.03)/g1^4 + (2*t^7.04)/(g1*g2) + (2*g1^5*t^7.07)/g2^7 + (g2^16*t^7.78)/g1^8 + (2*g2^10*t^7.8)/g1^2 + g1^4*g2^4*t^7.83 - (g1^10*t^7.85)/g2^2 + (g2^16*t^8.01)/g1^20 + (2*g2^13*t^8.03)/g1^17 + (4*g2^10*t^8.04)/g1^14 + (2*g2^7*t^8.05)/g1^11 + (3*g2^4*t^8.06)/g1^8 - (6*g2*t^8.07)/g1^5 + (3*t^8.09)/(g1^2*g2^2) - (8*g1*t^8.1)/g2^5 + (2*g1^4*t^8.11)/g2^8 - (2*g1^7*t^8.12)/g2^11 + (g2^16*t^8.25)/g1^32 + (2*g2^13*t^8.26)/g1^29 + (3*g2^10*t^8.27)/g1^26 + (6*g2^7*t^8.29)/g1^23 + (9*g2^4*t^8.3)/g1^20 + (6*g2*t^8.31)/g1^17 + (11*t^8.32)/(g1^14*g2^2) + (6*t^8.34)/(g1^11*g2^5) + (9*t^8.35)/(g1^8*g2^8) + (4*t^8.36)/(g1^5*g2^11) + (8*t^8.37)/(g1^2*g2^14) + (5*g1^4*t^8.4)/g2^20 + g1^9*g2^9*t^8.61 + (g2^15*t^8.82)/g1^9 + (2*g2^12*t^8.83)/g1^6 + (g2^9*t^8.85)/g1^3 + 2*g2^6*t^8.86 - 3*g1^3*g2^3*t^8.87 - (2*g1^9*t^8.89)/g2^3 - t^4.04/(g1*g2*y) - (g2^3*t^6.11)/(g1^9*y) - (2*t^6.12)/(g1^6*y) - (2*t^6.14)/(g2^6*y) + (2*g2^5*t^7.14)/(g1^13*y) + (g2^2*t^7.15)/(g1^10*y) + (2*t^7.16)/(g1^7*g2*y) + (4*t^7.17)/(g1^4*g2^4*y) + (g1^2*t^7.2)/(g2^10*y) + (g2^7*t^7.93)/(g1^5*y) + (4*g2^4*t^7.94)/(g1^2*y) + (4*g1^4*t^7.97)/(g2^2*y) + (g1^7*t^7.98)/(g2^5*y) - (g2^7*t^8.17)/(g1^17*y) - (2*g2^4*t^8.18)/(g1^14*y) - (3*g2*t^8.19)/(g1^11*y) - (2*t^8.21)/(g1^8*g2^2*y) - (4*t^8.22)/(g1^5*g2^5*y) - (3*g1*t^8.24)/(g2^11*y) + (g2^12*t^8.95)/(g1^12*y) + (2*g2^9*t^8.96)/(g1^9*y) + (2*g2^6*t^8.98)/(g1^6*y) + (6*g2^3*t^8.99)/(g1^3*y) - (t^4.04*y)/(g1*g2) - (g2^3*t^6.11*y)/g1^9 - (2*t^6.12*y)/g1^6 - (2*t^6.14*y)/g2^6 + (2*g2^5*t^7.14*y)/g1^13 + (g2^2*t^7.15*y)/g1^10 + (2*t^7.16*y)/(g1^7*g2) + (4*t^7.17*y)/(g1^4*g2^4) + (g1^2*t^7.2*y)/g2^10 + (g2^7*t^7.93*y)/g1^5 + (4*g2^4*t^7.94*y)/g1^2 + (4*g1^4*t^7.97*y)/g2^2 + (g1^7*t^7.98*y)/g2^5 - (g2^7*t^8.17*y)/g1^17 - (2*g2^4*t^8.18*y)/g1^14 - (3*g2*t^8.19*y)/g1^11 - (2*t^8.21*y)/(g1^8*g2^2) - (4*t^8.22*y)/(g1^5*g2^5) - (3*g1*t^8.24*y)/g2^11 + (g2^12*t^8.95*y)/g1^12 + (2*g2^9*t^8.96*y)/g1^9 + (2*g2^6*t^8.98*y)/g1^6 + (6*g2^3*t^8.99*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1239 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_6$ + $ M_4M_6$ + $ M_6M_7$ | 0.6689 | 0.8347 | 0.8013 | [X:[], M:[0.6937, 1.3015, 0.7009, 0.7009, 0.6961, 1.2991, 0.7009], q:[0.829, 0.8218], qb:[0.4773, 0.4749], phi:[0.3493]] | t^2.08 + t^2.09 + 2*t^2.1 + t^2.86 + t^3.89 + 2*t^3.9 + t^3.91 + t^4.16 + t^4.17 + 3*t^4.18 + 2*t^4.19 + 3*t^4.21 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^5.71 + t^5.97 + t^5.98 + 4*t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y | detail |