Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46164 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ | 0.7103 | 0.916 | 0.7755 | [X:[], M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] | [X:[], M:[[-4, -3, 1], [-3, -4, 1], [-5, -5, 2], [-1, 0, -1], [-2, -2, 0]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_3$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_2$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_2M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_4^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$ | . | -5 | 2*t^2.04 + 4*t^2.08 + t^2.87 + 2*t^3.88 + 3*t^4.09 + 8*t^4.13 + 10*t^4.17 + 2*t^4.92 + 5*t^4.96 + t^5.75 + 4*t^5.92 + 6*t^5.96 - 5*t^6. - 2*t^6.04 + 4*t^6.13 + 12*t^6.17 + 20*t^6.21 + 20*t^6.25 + 2*t^6.75 + 3*t^6.96 + 8*t^7. + 10*t^7.04 - 2*t^7.08 + 3*t^7.75 - 2*t^7.87 + 6*t^7.96 + 12*t^8. + 2*t^8.04 - 23*t^8.08 - 8*t^8.12 + 5*t^8.17 + 16*t^8.21 + 30*t^8.25 + 40*t^8.29 + 35*t^8.34 + t^8.62 + 4*t^8.79 + 6*t^8.83 - 9*t^8.87 - 4*t^8.91 - t^4.04/y - (2*t^6.09)/y - (4*t^6.13)/y + t^7.09/y + (8*t^7.13)/y + (6*t^7.17)/y + (2*t^7.92)/y + (8*t^7.96)/y + (2*t^8.)/y - (3*t^8.13)/y - (8*t^8.17)/y - (10*t^8.21)/y + (4*t^8.92)/y + (8*t^8.96)/y - t^4.04*y - 2*t^6.09*y - 4*t^6.13*y + t^7.09*y + 8*t^7.13*y + 6*t^7.17*y + 2*t^7.92*y + 8*t^7.96*y + 2*t^8.*y - 3*t^8.13*y - 8*t^8.17*y - 10*t^8.21*y + 4*t^8.92*y + 8*t^8.96*y | (g3*t^2.04)/(g1^4*g2^3) + (g3^2*t^2.04)/(g1^5*g2^5) + (2*t^2.08)/(g1^2*g2^2) + t^2.08/(g1*g3) + (g3*t^2.08)/(g1^3*g2^4) + g1^3*g2^3*t^2.87 + g2*g3*t^3.88 + (g3^2*t^3.88)/(g1*g2) + (g3^2*t^4.09)/(g1^8*g2^6) + (g3^3*t^4.09)/(g1^9*g2^8) + (g3^4*t^4.09)/(g1^10*g2^10) + t^4.13/(g1^5*g2^3) + (3*g3*t^4.13)/(g1^6*g2^5) + (3*g3^2*t^4.13)/(g1^7*g2^7) + (g3^3*t^4.13)/(g1^8*g2^9) + (4*t^4.17)/(g1^4*g2^4) + t^4.17/(g1^2*g3^2) + (2*t^4.17)/(g1^3*g2^2*g3) + (2*g3*t^4.17)/(g1^5*g2^6) + (g3^2*t^4.17)/(g1^6*g2^8) + (g3*t^4.92)/g1 + (g3^2*t^4.92)/(g1^2*g2^2) + 3*g1*g2*t^4.96 + (g1^2*g2^3*t^4.96)/g3 + (g3*t^4.96)/g2 + g1^6*g2^6*t^5.75 + (g3^2*t^5.92)/(g1^4*g2^2) + (2*g3^3*t^5.92)/(g1^5*g2^4) + (g3^4*t^5.92)/(g1^6*g2^6) + (g2*t^5.96)/g1 + (2*g3*t^5.96)/(g1^2*g2) + (2*g3^2*t^5.96)/(g1^3*g2^3) + (g3^3*t^5.96)/(g1^4*g2^5) - 3*t^6. - (g1*g2^2*t^6.)/g3 - (g3*t^6.)/(g1*g2^2) - (g1^3*g2^3*t^6.04)/g3^2 - (g1^2*g2*t^6.04)/g3 + (g3^3*t^6.13)/(g1^12*g2^9) + (g3^4*t^6.13)/(g1^13*g2^11) + (g3^5*t^6.13)/(g1^14*g2^13) + (g3^6*t^6.13)/(g1^15*g2^15) + (g3*t^6.17)/(g1^9*g2^6) + (3*g3^2*t^6.17)/(g1^10*g2^8) + (4*g3^3*t^6.17)/(g1^11*g2^10) + (3*g3^4*t^6.17)/(g1^12*g2^12) + (g3^5*t^6.17)/(g1^13*g2^14) + (3*t^6.21)/(g1^7*g2^5) + t^6.21/(g1^6*g2^3*g3) + (6*g3*t^6.21)/(g1^8*g2^7) + (6*g3^2*t^6.21)/(g1^9*g2^9) + (3*g3^3*t^6.21)/(g1^10*g2^11) + (g3^4*t^6.21)/(g1^11*g2^13) + (6*t^6.25)/(g1^6*g2^6) + t^6.25/(g1^3*g3^3) + (2*t^6.25)/(g1^4*g2^2*g3^2) + (4*t^6.25)/(g1^5*g2^4*g3) + (4*g3*t^6.25)/(g1^7*g2^8) + (2*g3^2*t^6.25)/(g1^8*g2^10) + (g3^3*t^6.25)/(g1^9*g2^12) + g1^3*g2^4*g3*t^6.75 + g1^2*g2^2*g3^2*t^6.75 + (g3^2*t^6.96)/(g1^5*g2^3) + (g3^3*t^6.96)/(g1^6*g2^5) + (g3^4*t^6.96)/(g1^7*g2^7) + t^7./g1^2 + (3*g3*t^7.)/(g1^3*g2^2) + (3*g3^2*t^7.)/(g1^4*g2^4) + (g3^3*t^7.)/(g1^5*g2^6) + (4*t^7.04)/(g1*g2) + (g1*g2^3*t^7.04)/g3^2 + (2*g2*t^7.04)/g3 + (2*g3*t^7.04)/(g1^2*g2^3) + (g3^2*t^7.04)/(g1^3*g2^5) - (g1^2*g2^2*t^7.08)/g3^2 - (g1*t^7.08)/g3 + g2^2*g3^2*t^7.75 + (g3^3*t^7.75)/g1 + (g3^4*t^7.75)/(g1^2*g2^2) - (g1^7*g2^7*t^7.87)/g3^2 - (g1^6*g2^5*t^7.87)/g3 + (g3^3*t^7.96)/(g1^8*g2^5) + (2*g3^4*t^7.96)/(g1^9*g2^7) + (2*g3^5*t^7.96)/(g1^10*g2^9) + (g3^6*t^7.96)/(g1^11*g2^11) + (g3*t^8.)/(g1^5*g2^2) + (3*g3^2*t^8.)/(g1^6*g2^4) + (4*g3^3*t^8.)/(g1^7*g2^6) + (3*g3^4*t^8.)/(g1^8*g2^8) + (g3^5*t^8.)/(g1^9*g2^10) + t^8.04/(g1^3*g2) + (g2*t^8.04)/(g1^2*g3) - (g3*t^8.04)/(g1^4*g2^3) - (g3^2*t^8.04)/(g1^5*g2^5) + (g3^3*t^8.04)/(g1^6*g2^7) + (g3^4*t^8.04)/(g1^7*g2^9) - (9*t^8.08)/(g1^2*g2^2) - (g2^2*t^8.08)/g3^2 - (6*t^8.08)/(g1*g3) - (6*g3*t^8.08)/(g1^3*g2^4) - (g3^2*t^8.08)/(g1^4*g2^6) - t^8.12/(g1*g2^3) - (g1^2*g2^3*t^8.12)/g3^3 - (3*g1*g2*t^8.12)/g3^2 - (3*t^8.12)/(g2*g3) + (g3^4*t^8.17)/(g1^16*g2^12) + (g3^5*t^8.17)/(g1^17*g2^14) + (g3^6*t^8.17)/(g1^18*g2^16) + (g3^7*t^8.17)/(g1^19*g2^18) + (g3^8*t^8.17)/(g1^20*g2^20) + (g3^2*t^8.21)/(g1^13*g2^9) + (3*g3^3*t^8.21)/(g1^14*g2^11) + (4*g3^4*t^8.21)/(g1^15*g2^13) + (4*g3^5*t^8.21)/(g1^16*g2^15) + (3*g3^6*t^8.21)/(g1^17*g2^17) + (g3^7*t^8.21)/(g1^18*g2^19) + t^8.25/(g1^10*g2^6) + (3*g3*t^8.25)/(g1^11*g2^8) + (7*g3^2*t^8.25)/(g1^12*g2^10) + (8*g3^3*t^8.25)/(g1^13*g2^12) + (7*g3^4*t^8.25)/(g1^14*g2^14) + (3*g3^5*t^8.25)/(g1^15*g2^16) + (g3^6*t^8.25)/(g1^16*g2^18) + (6*t^8.29)/(g1^9*g2^7) + t^8.29/(g1^7*g2^3*g3^2) + (3*t^8.29)/(g1^8*g2^5*g3) + (10*g3*t^8.29)/(g1^10*g2^9) + (10*g3^2*t^8.29)/(g1^11*g2^11) + (6*g3^3*t^8.29)/(g1^12*g2^13) + (3*g3^4*t^8.29)/(g1^13*g2^15) + (g3^5*t^8.29)/(g1^14*g2^17) + (9*t^8.34)/(g1^8*g2^8) + t^8.34/(g1^4*g3^4) + (2*t^8.34)/(g1^5*g2^2*g3^3) + (4*t^8.34)/(g1^6*g2^4*g3^2) + (6*t^8.34)/(g1^7*g2^6*g3) + (6*g3*t^8.34)/(g1^9*g2^10) + (4*g3^2*t^8.34)/(g1^10*g2^12) + (2*g3^3*t^8.34)/(g1^11*g2^14) + (g3^4*t^8.34)/(g1^12*g2^16) + g1^9*g2^9*t^8.62 + (g2*g3^2*t^8.79)/g1 + (2*g3^3*t^8.79)/(g1^2*g2) + (g3^4*t^8.79)/(g1^3*g2^3) + g1^2*g2^4*t^8.83 + 2*g1*g2^2*g3*t^8.83 + 2*g3^2*t^8.83 + (g3^3*t^8.83)/(g1*g2^2) - 5*g1^3*g2^3*t^8.87 - (2*g1^4*g2^5*t^8.87)/g3 - 2*g1^2*g2*g3*t^8.87 - (2*g1^6*g2^6*t^8.91)/g3^2 - (2*g1^5*g2^4*t^8.91)/g3 - t^4.04/(g1*g2*y) - (g3*t^6.09)/(g1^5*g2^4*y) - (g3^2*t^6.09)/(g1^6*g2^6*y) - (2*t^6.13)/(g1^3*g2^3*y) - t^6.13/(g1^2*g2*g3*y) - (g3*t^6.13)/(g1^4*g2^5*y) + (g3^3*t^7.09)/(g1^9*g2^8*y) + t^7.13/(g1^5*g2^3*y) + (3*g3*t^7.13)/(g1^6*g2^5*y) + (3*g3^2*t^7.13)/(g1^7*g2^7*y) + (g3^3*t^7.13)/(g1^8*g2^9*y) + (2*t^7.17)/(g1^4*g2^4*y) + (2*t^7.17)/(g1^3*g2^2*g3*y) + (2*g3*t^7.17)/(g1^5*g2^6*y) + (g3*t^7.92)/(g1*y) + (g3^2*t^7.92)/(g1^2*g2^2*y) + (4*g1*g2*t^7.96)/y + (2*g1^2*g2^3*t^7.96)/(g3*y) + (2*g3*t^7.96)/(g2*y) + (g1^4*g2^4*t^8.)/(g3^2*y) + (g1^3*g2^2*t^8.)/(g3*y) - (g3^2*t^8.13)/(g1^9*g2^7*y) - (g3^3*t^8.13)/(g1^10*g2^9*y) - (g3^4*t^8.13)/(g1^11*g2^11*y) - t^8.17/(g1^6*g2^4*y) - (3*g3*t^8.17)/(g1^7*g2^6*y) - (3*g3^2*t^8.17)/(g1^8*g2^8*y) - (g3^3*t^8.17)/(g1^9*g2^10*y) - (4*t^8.21)/(g1^5*g2^5*y) - t^8.21/(g1^3*g2*g3^2*y) - (2*t^8.21)/(g1^4*g2^3*g3*y) - (2*g3*t^8.21)/(g1^6*g2^7*y) - (g3^2*t^8.21)/(g1^7*g2^9*y) + (g3^2*t^8.92)/(g1^4*g2^2*y) + (2*g3^3*t^8.92)/(g1^5*g2^4*y) + (g3^4*t^8.92)/(g1^6*g2^6*y) + (g2*t^8.96)/(g1*y) + (3*g3*t^8.96)/(g1^2*g2*y) + (3*g3^2*t^8.96)/(g1^3*g2^3*y) + (g3^3*t^8.96)/(g1^4*g2^5*y) - (t^4.04*y)/(g1*g2) - (g3*t^6.09*y)/(g1^5*g2^4) - (g3^2*t^6.09*y)/(g1^6*g2^6) - (2*t^6.13*y)/(g1^3*g2^3) - (t^6.13*y)/(g1^2*g2*g3) - (g3*t^6.13*y)/(g1^4*g2^5) + (g3^3*t^7.09*y)/(g1^9*g2^8) + (t^7.13*y)/(g1^5*g2^3) + (3*g3*t^7.13*y)/(g1^6*g2^5) + (3*g3^2*t^7.13*y)/(g1^7*g2^7) + (g3^3*t^7.13*y)/(g1^8*g2^9) + (2*t^7.17*y)/(g1^4*g2^4) + (2*t^7.17*y)/(g1^3*g2^2*g3) + (2*g3*t^7.17*y)/(g1^5*g2^6) + (g3*t^7.92*y)/g1 + (g3^2*t^7.92*y)/(g1^2*g2^2) + 4*g1*g2*t^7.96*y + (2*g1^2*g2^3*t^7.96*y)/g3 + (2*g3*t^7.96*y)/g2 + (g1^4*g2^4*t^8.*y)/g3^2 + (g1^3*g2^2*t^8.*y)/g3 - (g3^2*t^8.13*y)/(g1^9*g2^7) - (g3^3*t^8.13*y)/(g1^10*g2^9) - (g3^4*t^8.13*y)/(g1^11*g2^11) - (t^8.17*y)/(g1^6*g2^4) - (3*g3*t^8.17*y)/(g1^7*g2^6) - (3*g3^2*t^8.17*y)/(g1^8*g2^8) - (g3^3*t^8.17*y)/(g1^9*g2^10) - (4*t^8.21*y)/(g1^5*g2^5) - (t^8.21*y)/(g1^3*g2*g3^2) - (2*t^8.21*y)/(g1^4*g2^3*g3) - (2*g3*t^8.21*y)/(g1^6*g2^7) - (g3^2*t^8.21*y)/(g1^7*g2^9) + (g3^2*t^8.92*y)/(g1^4*g2^2) + (2*g3^3*t^8.92*y)/(g1^5*g2^4) + (g3^4*t^8.92*y)/(g1^6*g2^6) + (g2*t^8.96*y)/g1 + (3*g3*t^8.96*y)/(g1^2*g2) + (3*g3^2*t^8.96*y)/(g1^3*g2^3) + (g3^3*t^8.96*y)/(g1^4*g2^5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46377 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_6\tilde{q}_1\tilde{q}_2$ | 0.7308 | 0.9552 | 0.7651 | [X:[], M:[0.687, 0.687, 0.6836, 0.6937, 0.6903, 0.6937], q:[0.4856, 0.8274], qb:[0.8274, 0.4789], phi:[0.3452]] | t^2.05 + 2*t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.89 + t^3.91 + t^4.1 + 2*t^4.11 + 5*t^4.12 + 6*t^4.13 + 7*t^4.14 + 4*t^4.15 + 3*t^4.16 + t^4.94 + 2*t^4.95 + 3*t^4.96 + 2*t^4.97 + t^5.79 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - t^4.04/y - t^4.04*y | detail | |
46461 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ \phi_1\tilde{q}_1^2$ | 0.7102 | 0.9155 | 0.7758 | [X:[], M:[0.6877, 0.6877, 0.6815, 0.6999, 0.6938], q:[0.4858, 0.8266], qb:[0.8266, 0.4736], phi:[0.3469]] | t^2.04 + 2*t^2.06 + 2*t^2.08 + t^2.1 + t^2.88 + t^3.88 + t^3.9 + t^4.09 + 2*t^4.11 + 5*t^4.13 + 5*t^4.14 + 5*t^4.16 + 2*t^4.18 + t^4.2 + t^4.92 + 2*t^4.94 + 3*t^4.96 + t^4.98 + t^5.76 + t^5.93 + 3*t^5.94 + 3*t^5.96 + t^5.98 - 2*t^6. - t^4.04/y - t^4.04*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45958 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ | 0.6897 | 0.8762 | 0.7872 | [X:[], M:[0.6829, 0.6979, 0.6829, 0.6979], q:[0.4841, 0.8331], qb:[0.818, 0.469], phi:[0.349]] | 2*t^2.05 + 3*t^2.09 + t^2.86 + 2*t^3.86 + t^3.91 + 3*t^4.1 + 6*t^4.14 + 6*t^4.19 + 2*t^4.91 + 4*t^4.95 + t^5.72 + 4*t^5.91 + 6*t^5.95 - 2*t^6. - t^4.05/y - t^4.05*y | detail |