Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45958 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ 0.6897 0.8762 0.7872 [M:[0.6829, 0.6979, 0.6829, 0.6979], q:[0.4841, 0.8331], qb:[0.818, 0.469], phi:[0.349]] [M:[[-4, -3, 1], [-3, -4, 1], [-5, -5, 2], [-1, 0, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ ${}M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 2*t^2.049 + 3*t^2.094 + t^2.859 + 2*t^3.861 + t^3.906 + 3*t^4.097 + 6*t^4.142 + 6*t^4.188 + 2*t^4.908 + 4*t^4.953 + t^5.718 + 4*t^5.909 + 6*t^5.955 - 2*t^6. - 2*t^6.045 + 4*t^6.146 + 9*t^6.191 + 12*t^6.236 + 10*t^6.282 + 2*t^6.72 + t^6.765 + 3*t^6.956 + 6*t^7.002 + 5*t^7.047 - 2*t^7.092 + 3*t^7.722 + 2*t^7.767 - 2*t^7.858 + 6*t^7.958 + 11*t^8.003 + 2*t^8.049 - 12*t^8.094 - 6*t^8.139 + 5*t^8.194 + 12*t^8.24 + 18*t^8.285 + 20*t^8.33 + 15*t^8.375 + t^8.578 + 4*t^8.769 + 6*t^8.814 - 5*t^8.859 - 4*t^8.905 - t^4.047/y - (2*t^6.095)/y - (3*t^6.141)/y + t^7.097/y + (6*t^7.142)/y + (3*t^7.188)/y + (2*t^7.908)/y + (6*t^7.953)/y + (2*t^7.998)/y - (3*t^8.144)/y - (6*t^8.189)/y - (6*t^8.235)/y + (4*t^8.909)/y + (8*t^8.955)/y - t^4.047*y - 2*t^6.095*y - 3*t^6.141*y + t^7.097*y + 6*t^7.142*y + 3*t^7.188*y + 2*t^7.908*y + 6*t^7.953*y + 2*t^7.998*y - 3*t^8.144*y - 6*t^8.189*y - 6*t^8.235*y + 4*t^8.909*y + 8*t^8.955*y (g3*t^2.049)/(g1^4*g2^3) + (g3^2*t^2.049)/(g1^5*g2^5) + t^2.094/(g1^2*g2^2) + t^2.094/(g1*g3) + (g3*t^2.094)/(g1^3*g2^4) + g1^3*g2^3*t^2.859 + g2*g3*t^3.861 + (g3^2*t^3.861)/(g1*g2) + g1^2*g2^2*t^3.906 + (g3^2*t^4.097)/(g1^8*g2^6) + (g3^3*t^4.097)/(g1^9*g2^8) + (g3^4*t^4.097)/(g1^10*g2^10) + t^4.142/(g1^5*g2^3) + (2*g3*t^4.142)/(g1^6*g2^5) + (2*g3^2*t^4.142)/(g1^7*g2^7) + (g3^3*t^4.142)/(g1^8*g2^9) + (2*t^4.188)/(g1^4*g2^4) + t^4.188/(g1^2*g3^2) + t^4.188/(g1^3*g2^2*g3) + (g3*t^4.188)/(g1^5*g2^6) + (g3^2*t^4.188)/(g1^6*g2^8) + (g3*t^4.908)/g1 + (g3^2*t^4.908)/(g1^2*g2^2) + 2*g1*g2*t^4.953 + (g1^2*g2^3*t^4.953)/g3 + (g3*t^4.953)/g2 + g1^6*g2^6*t^5.718 + (g3^2*t^5.909)/(g1^4*g2^2) + (2*g3^3*t^5.909)/(g1^5*g2^4) + (g3^4*t^5.909)/(g1^6*g2^6) + (g2*t^5.955)/g1 + (2*g3*t^5.955)/(g1^2*g2) + (2*g3^2*t^5.955)/(g1^3*g2^3) + (g3^3*t^5.955)/(g1^4*g2^5) - 2*t^6. - (g1^3*g2^3*t^6.045)/g3^2 - (g1^2*g2*t^6.045)/g3 + (g3^3*t^6.146)/(g1^12*g2^9) + (g3^4*t^6.146)/(g1^13*g2^11) + (g3^5*t^6.146)/(g1^14*g2^13) + (g3^6*t^6.146)/(g1^15*g2^15) + (g3*t^6.191)/(g1^9*g2^6) + (2*g3^2*t^6.191)/(g1^10*g2^8) + (3*g3^3*t^6.191)/(g1^11*g2^10) + (2*g3^4*t^6.191)/(g1^12*g2^12) + (g3^5*t^6.191)/(g1^13*g2^14) + (2*t^6.236)/(g1^7*g2^5) + t^6.236/(g1^6*g2^3*g3) + (3*g3*t^6.236)/(g1^8*g2^7) + (3*g3^2*t^6.236)/(g1^9*g2^9) + (2*g3^3*t^6.236)/(g1^10*g2^11) + (g3^4*t^6.236)/(g1^11*g2^13) + (2*t^6.282)/(g1^6*g2^6) + t^6.282/(g1^3*g3^3) + t^6.282/(g1^4*g2^2*g3^2) + (2*t^6.282)/(g1^5*g2^4*g3) + (2*g3*t^6.282)/(g1^7*g2^8) + (g3^2*t^6.282)/(g1^8*g2^10) + (g3^3*t^6.282)/(g1^9*g2^12) + g1^3*g2^4*g3*t^6.72 + g1^2*g2^2*g3^2*t^6.72 + g1^5*g2^5*t^6.765 + (g3^2*t^6.956)/(g1^5*g2^3) + (g3^3*t^6.956)/(g1^6*g2^5) + (g3^4*t^6.956)/(g1^7*g2^7) + t^7.002/g1^2 + (2*g3*t^7.002)/(g1^3*g2^2) + (2*g3^2*t^7.002)/(g1^4*g2^4) + (g3^3*t^7.002)/(g1^5*g2^6) + t^7.047/(g1*g2) + (g1*g2^3*t^7.047)/g3^2 + (g2*t^7.047)/g3 + (g3*t^7.047)/(g1^2*g2^3) + (g3^2*t^7.047)/(g1^3*g2^5) - (g1^2*g2^2*t^7.092)/g3^2 - (g1*t^7.092)/g3 + g2^2*g3^2*t^7.722 + (g3^3*t^7.722)/g1 + (g3^4*t^7.722)/(g1^2*g2^2) + g1^2*g2^3*g3*t^7.767 + g1*g2*g3^2*t^7.767 - (g1^7*g2^7*t^7.858)/g3^2 - (g1^6*g2^5*t^7.858)/g3 + (g3^3*t^7.958)/(g1^8*g2^5) + (2*g3^4*t^7.958)/(g1^9*g2^7) + (2*g3^5*t^7.958)/(g1^10*g2^9) + (g3^6*t^7.958)/(g1^11*g2^11) + (g3*t^8.003)/(g1^5*g2^2) + (3*g3^2*t^8.003)/(g1^6*g2^4) + (3*g3^3*t^8.003)/(g1^7*g2^6) + (3*g3^4*t^8.003)/(g1^8*g2^8) + (g3^5*t^8.003)/(g1^9*g2^10) + t^8.049/(g1^3*g2) + (g2*t^8.049)/(g1^2*g3) - (g3*t^8.049)/(g1^4*g2^3) - (g3^2*t^8.049)/(g1^5*g2^5) + (g3^3*t^8.049)/(g1^6*g2^7) + (g3^4*t^8.049)/(g1^7*g2^9) - (4*t^8.094)/(g1^2*g2^2) - (4*t^8.094)/(g1*g3) - (4*g3*t^8.094)/(g1^3*g2^4) - t^8.139/(g1*g2^3) - (g1^2*g2^3*t^8.139)/g3^3 - (2*g1*g2*t^8.139)/g3^2 - (2*t^8.139)/(g2*g3) + (g3^4*t^8.194)/(g1^16*g2^12) + (g3^5*t^8.194)/(g1^17*g2^14) + (g3^6*t^8.194)/(g1^18*g2^16) + (g3^7*t^8.194)/(g1^19*g2^18) + (g3^8*t^8.194)/(g1^20*g2^20) + (g3^2*t^8.24)/(g1^13*g2^9) + (2*g3^3*t^8.24)/(g1^14*g2^11) + (3*g3^4*t^8.24)/(g1^15*g2^13) + (3*g3^5*t^8.24)/(g1^16*g2^15) + (2*g3^6*t^8.24)/(g1^17*g2^17) + (g3^7*t^8.24)/(g1^18*g2^19) + t^8.285/(g1^10*g2^6) + (2*g3*t^8.285)/(g1^11*g2^8) + (4*g3^2*t^8.285)/(g1^12*g2^10) + (4*g3^3*t^8.285)/(g1^13*g2^12) + (4*g3^4*t^8.285)/(g1^14*g2^14) + (2*g3^5*t^8.285)/(g1^15*g2^16) + (g3^6*t^8.285)/(g1^16*g2^18) + (3*t^8.33)/(g1^9*g2^7) + t^8.33/(g1^7*g2^3*g3^2) + (2*t^8.33)/(g1^8*g2^5*g3) + (4*g3*t^8.33)/(g1^10*g2^9) + (4*g3^2*t^8.33)/(g1^11*g2^11) + (3*g3^3*t^8.33)/(g1^12*g2^13) + (2*g3^4*t^8.33)/(g1^13*g2^15) + (g3^5*t^8.33)/(g1^14*g2^17) + (3*t^8.375)/(g1^8*g2^8) + t^8.375/(g1^4*g3^4) + t^8.375/(g1^5*g2^2*g3^3) + (2*t^8.375)/(g1^6*g2^4*g3^2) + (2*t^8.375)/(g1^7*g2^6*g3) + (2*g3*t^8.375)/(g1^9*g2^10) + (2*g3^2*t^8.375)/(g1^10*g2^12) + (g3^3*t^8.375)/(g1^11*g2^14) + (g3^4*t^8.375)/(g1^12*g2^16) + g1^9*g2^9*t^8.578 + (g2*g3^2*t^8.769)/g1 + (2*g3^3*t^8.769)/(g1^2*g2) + (g3^4*t^8.769)/(g1^3*g2^3) + g1^2*g2^4*t^8.814 + 2*g1*g2^2*g3*t^8.814 + 2*g3^2*t^8.814 + (g3^3*t^8.814)/(g1*g2^2) - 3*g1^3*g2^3*t^8.859 - (g1^4*g2^5*t^8.859)/g3 - g1^2*g2*g3*t^8.859 - (2*g1^6*g2^6*t^8.905)/g3^2 - (2*g1^5*g2^4*t^8.905)/g3 - t^4.047/(g1*g2*y) - (g3*t^6.095)/(g1^5*g2^4*y) - (g3^2*t^6.095)/(g1^6*g2^6*y) - t^6.141/(g1^3*g2^3*y) - t^6.141/(g1^2*g2*g3*y) - (g3*t^6.141)/(g1^4*g2^5*y) + (g3^3*t^7.097)/(g1^9*g2^8*y) + t^7.142/(g1^5*g2^3*y) + (2*g3*t^7.142)/(g1^6*g2^5*y) + (2*g3^2*t^7.142)/(g1^7*g2^7*y) + (g3^3*t^7.142)/(g1^8*g2^9*y) + t^7.188/(g1^4*g2^4*y) + t^7.188/(g1^3*g2^2*g3*y) + (g3*t^7.188)/(g1^5*g2^6*y) + (g3*t^7.908)/(g1*y) + (g3^2*t^7.908)/(g1^2*g2^2*y) + (2*g1*g2*t^7.953)/y + (2*g1^2*g2^3*t^7.953)/(g3*y) + (2*g3*t^7.953)/(g2*y) + (g1^4*g2^4*t^7.998)/(g3^2*y) + (g1^3*g2^2*t^7.998)/(g3*y) - (g3^2*t^8.144)/(g1^9*g2^7*y) - (g3^3*t^8.144)/(g1^10*g2^9*y) - (g3^4*t^8.144)/(g1^11*g2^11*y) - t^8.189/(g1^6*g2^4*y) - (2*g3*t^8.189)/(g1^7*g2^6*y) - (2*g3^2*t^8.189)/(g1^8*g2^8*y) - (g3^3*t^8.189)/(g1^9*g2^10*y) - (2*t^8.235)/(g1^5*g2^5*y) - t^8.235/(g1^3*g2*g3^2*y) - t^8.235/(g1^4*g2^3*g3*y) - (g3*t^8.235)/(g1^6*g2^7*y) - (g3^2*t^8.235)/(g1^7*g2^9*y) + (g3^2*t^8.909)/(g1^4*g2^2*y) + (2*g3^3*t^8.909)/(g1^5*g2^4*y) + (g3^4*t^8.909)/(g1^6*g2^6*y) + (g2*t^8.955)/(g1*y) + (3*g3*t^8.955)/(g1^2*g2*y) + (3*g3^2*t^8.955)/(g1^3*g2^3*y) + (g3^3*t^8.955)/(g1^4*g2^5*y) - (t^4.047*y)/(g1*g2) - (g3*t^6.095*y)/(g1^5*g2^4) - (g3^2*t^6.095*y)/(g1^6*g2^6) - (t^6.141*y)/(g1^3*g2^3) - (t^6.141*y)/(g1^2*g2*g3) - (g3*t^6.141*y)/(g1^4*g2^5) + (g3^3*t^7.097*y)/(g1^9*g2^8) + (t^7.142*y)/(g1^5*g2^3) + (2*g3*t^7.142*y)/(g1^6*g2^5) + (2*g3^2*t^7.142*y)/(g1^7*g2^7) + (g3^3*t^7.142*y)/(g1^8*g2^9) + (t^7.188*y)/(g1^4*g2^4) + (t^7.188*y)/(g1^3*g2^2*g3) + (g3*t^7.188*y)/(g1^5*g2^6) + (g3*t^7.908*y)/g1 + (g3^2*t^7.908*y)/(g1^2*g2^2) + 2*g1*g2*t^7.953*y + (2*g1^2*g2^3*t^7.953*y)/g3 + (2*g3*t^7.953*y)/g2 + (g1^4*g2^4*t^7.998*y)/g3^2 + (g1^3*g2^2*t^7.998*y)/g3 - (g3^2*t^8.144*y)/(g1^9*g2^7) - (g3^3*t^8.144*y)/(g1^10*g2^9) - (g3^4*t^8.144*y)/(g1^11*g2^11) - (t^8.189*y)/(g1^6*g2^4) - (2*g3*t^8.189*y)/(g1^7*g2^6) - (2*g3^2*t^8.189*y)/(g1^8*g2^8) - (g3^3*t^8.189*y)/(g1^9*g2^10) - (2*t^8.235*y)/(g1^5*g2^5) - (t^8.235*y)/(g1^3*g2*g3^2) - (t^8.235*y)/(g1^4*g2^3*g3) - (g3*t^8.235*y)/(g1^6*g2^7) - (g3^2*t^8.235*y)/(g1^7*g2^9) + (g3^2*t^8.909*y)/(g1^4*g2^2) + (2*g3^3*t^8.909*y)/(g1^5*g2^4) + (g3^4*t^8.909*y)/(g1^6*g2^6) + (g2*t^8.955*y)/g1 + (3*g3*t^8.955*y)/(g1^2*g2) + (3*g3^2*t^8.955*y)/(g1^3*g2^3) + (g3^3*t^8.955*y)/(g1^4*g2^5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46141 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ 0.6896 0.8756 0.7876 [M:[0.6901, 0.6901, 0.6833, 0.7038], q:[0.4841, 0.8258], qb:[0.8258, 0.4705], phi:[0.3485]] t^2.05 + 2*t^2.07 + t^2.091 + t^2.111 + t^2.864 + t^3.868 + t^3.889 + t^3.909 + t^4.1 + 2*t^4.12 + 4*t^4.141 + 3*t^4.161 + 3*t^4.182 + t^4.202 + t^4.223 + t^4.914 + 2*t^4.934 + 2*t^4.955 + t^4.975 + t^5.728 + t^5.918 + 3*t^5.939 + 3*t^5.959 + 2*t^5.98 - t^6. - t^4.045/y - t^4.045*y detail
46164 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ 0.7103 0.916 0.7755 [M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] 2*t^2.043 + 4*t^2.084 + t^2.874 + 2*t^3.876 + 3*t^4.086 + 8*t^4.127 + 10*t^4.168 + 2*t^4.918 + 5*t^4.958 + t^5.749 + 4*t^5.919 + 6*t^5.959 - 5*t^6. - t^4.042/y - t^4.042*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45886 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ 0.6693 0.8377 0.7989 [M:[0.6919, 0.6919, 0.6801], q:[0.4841, 0.8241], qb:[0.8241, 0.4605], phi:[0.3518]] t^2.04 + 2*t^2.076 + t^2.111 + t^2.834 + t^3.818 + 2*t^3.854 + t^3.889 + t^4.08 + 2*t^4.116 + 4*t^4.151 + 2*t^4.187 + t^4.222 + t^4.874 + 2*t^4.909 + 2*t^4.945 + t^5.667 + t^5.858 + 4*t^5.894 + 5*t^5.929 + 2*t^5.965 - 2*t^6. - t^4.055/y - t^4.055*y detail