Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45958 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ | 0.6897 | 0.8762 | 0.7872 | [X:[], M:[0.6829, 0.6979, 0.6829, 0.6979], q:[0.4841, 0.8331], qb:[0.818, 0.469], phi:[0.349]] | [X:[], M:[[-4, -3, 1], [-3, -4, 1], [-5, -5, 2], [-1, 0, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_3$, $ \phi_1^2$, $ M_4$, $ M_2$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1M_4$, $ M_3M_4$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_2M_4$, $ \phi_1^4$, $ M_4^2$, $ M_4\phi_1^2$, $ M_2\phi_1^2$, $ M_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_3\phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$ | $M_4\phi_1q_1\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$ | -2 | 2*t^2.05 + 3*t^2.09 + t^2.86 + 2*t^3.86 + t^3.91 + 3*t^4.1 + 6*t^4.14 + 6*t^4.19 + 2*t^4.91 + 4*t^4.95 + t^5.72 + 4*t^5.91 + 6*t^5.95 - 2*t^6. - 2*t^6.05 + 4*t^6.15 + 9*t^6.19 + 12*t^6.24 + 10*t^6.28 + 2*t^6.72 + t^6.77 + 3*t^6.96 + 6*t^7. + 5*t^7.05 - 2*t^7.09 + 3*t^7.72 + 2*t^7.77 - 2*t^7.86 + 6*t^7.96 + 11*t^8. + 2*t^8.05 - 12*t^8.09 - 6*t^8.14 + 5*t^8.19 + 12*t^8.24 + 18*t^8.28 + 20*t^8.33 + 15*t^8.38 + t^8.58 + 4*t^8.77 + 6*t^8.81 - 5*t^8.86 - 4*t^8.9 - t^4.05/y - (2*t^6.1)/y - (3*t^6.14)/y + t^7.1/y + (6*t^7.14)/y + (3*t^7.19)/y + (2*t^7.91)/y + (6*t^7.95)/y + (2*t^8.)/y - (3*t^8.14)/y - (6*t^8.19)/y - (6*t^8.23)/y + (4*t^8.91)/y + (8*t^8.95)/y - t^4.05*y - 2*t^6.1*y - 3*t^6.14*y + t^7.1*y + 6*t^7.14*y + 3*t^7.19*y + 2*t^7.91*y + 6*t^7.95*y + 2*t^8.*y - 3*t^8.14*y - 6*t^8.19*y - 6*t^8.23*y + 4*t^8.91*y + 8*t^8.95*y | (g3*t^2.05)/(g1^4*g2^3) + (g3^2*t^2.05)/(g1^5*g2^5) + t^2.09/(g1^2*g2^2) + t^2.09/(g1*g3) + (g3*t^2.09)/(g1^3*g2^4) + g1^3*g2^3*t^2.86 + g2*g3*t^3.86 + (g3^2*t^3.86)/(g1*g2) + g1^2*g2^2*t^3.91 + (g3^2*t^4.1)/(g1^8*g2^6) + (g3^3*t^4.1)/(g1^9*g2^8) + (g3^4*t^4.1)/(g1^10*g2^10) + t^4.14/(g1^5*g2^3) + (2*g3*t^4.14)/(g1^6*g2^5) + (2*g3^2*t^4.14)/(g1^7*g2^7) + (g3^3*t^4.14)/(g1^8*g2^9) + (2*t^4.19)/(g1^4*g2^4) + t^4.19/(g1^2*g3^2) + t^4.19/(g1^3*g2^2*g3) + (g3*t^4.19)/(g1^5*g2^6) + (g3^2*t^4.19)/(g1^6*g2^8) + (g3*t^4.91)/g1 + (g3^2*t^4.91)/(g1^2*g2^2) + 2*g1*g2*t^4.95 + (g1^2*g2^3*t^4.95)/g3 + (g3*t^4.95)/g2 + g1^6*g2^6*t^5.72 + (g3^2*t^5.91)/(g1^4*g2^2) + (2*g3^3*t^5.91)/(g1^5*g2^4) + (g3^4*t^5.91)/(g1^6*g2^6) + (g2*t^5.95)/g1 + (2*g3*t^5.95)/(g1^2*g2) + (2*g3^2*t^5.95)/(g1^3*g2^3) + (g3^3*t^5.95)/(g1^4*g2^5) - 2*t^6. - (g1^3*g2^3*t^6.05)/g3^2 - (g1^2*g2*t^6.05)/g3 + (g3^3*t^6.15)/(g1^12*g2^9) + (g3^4*t^6.15)/(g1^13*g2^11) + (g3^5*t^6.15)/(g1^14*g2^13) + (g3^6*t^6.15)/(g1^15*g2^15) + (g3*t^6.19)/(g1^9*g2^6) + (2*g3^2*t^6.19)/(g1^10*g2^8) + (3*g3^3*t^6.19)/(g1^11*g2^10) + (2*g3^4*t^6.19)/(g1^12*g2^12) + (g3^5*t^6.19)/(g1^13*g2^14) + (2*t^6.24)/(g1^7*g2^5) + t^6.24/(g1^6*g2^3*g3) + (3*g3*t^6.24)/(g1^8*g2^7) + (3*g3^2*t^6.24)/(g1^9*g2^9) + (2*g3^3*t^6.24)/(g1^10*g2^11) + (g3^4*t^6.24)/(g1^11*g2^13) + (2*t^6.28)/(g1^6*g2^6) + t^6.28/(g1^3*g3^3) + t^6.28/(g1^4*g2^2*g3^2) + (2*t^6.28)/(g1^5*g2^4*g3) + (2*g3*t^6.28)/(g1^7*g2^8) + (g3^2*t^6.28)/(g1^8*g2^10) + (g3^3*t^6.28)/(g1^9*g2^12) + g1^3*g2^4*g3*t^6.72 + g1^2*g2^2*g3^2*t^6.72 + g1^5*g2^5*t^6.77 + (g3^2*t^6.96)/(g1^5*g2^3) + (g3^3*t^6.96)/(g1^6*g2^5) + (g3^4*t^6.96)/(g1^7*g2^7) + t^7./g1^2 + (2*g3*t^7.)/(g1^3*g2^2) + (2*g3^2*t^7.)/(g1^4*g2^4) + (g3^3*t^7.)/(g1^5*g2^6) + t^7.05/(g1*g2) + (g1*g2^3*t^7.05)/g3^2 + (g2*t^7.05)/g3 + (g3*t^7.05)/(g1^2*g2^3) + (g3^2*t^7.05)/(g1^3*g2^5) - (g1^2*g2^2*t^7.09)/g3^2 - (g1*t^7.09)/g3 + g2^2*g3^2*t^7.72 + (g3^3*t^7.72)/g1 + (g3^4*t^7.72)/(g1^2*g2^2) + g1^2*g2^3*g3*t^7.77 + g1*g2*g3^2*t^7.77 - (g1^7*g2^7*t^7.86)/g3^2 - (g1^6*g2^5*t^7.86)/g3 + (g3^3*t^7.96)/(g1^8*g2^5) + (2*g3^4*t^7.96)/(g1^9*g2^7) + (2*g3^5*t^7.96)/(g1^10*g2^9) + (g3^6*t^7.96)/(g1^11*g2^11) + (g3*t^8.)/(g1^5*g2^2) + (3*g3^2*t^8.)/(g1^6*g2^4) + (3*g3^3*t^8.)/(g1^7*g2^6) + (3*g3^4*t^8.)/(g1^8*g2^8) + (g3^5*t^8.)/(g1^9*g2^10) + t^8.05/(g1^3*g2) + (g2*t^8.05)/(g1^2*g3) - (g3*t^8.05)/(g1^4*g2^3) - (g3^2*t^8.05)/(g1^5*g2^5) + (g3^3*t^8.05)/(g1^6*g2^7) + (g3^4*t^8.05)/(g1^7*g2^9) - (4*t^8.09)/(g1^2*g2^2) - (4*t^8.09)/(g1*g3) - (4*g3*t^8.09)/(g1^3*g2^4) - t^8.14/(g1*g2^3) - (g1^2*g2^3*t^8.14)/g3^3 - (2*g1*g2*t^8.14)/g3^2 - (2*t^8.14)/(g2*g3) + (g3^4*t^8.19)/(g1^16*g2^12) + (g3^5*t^8.19)/(g1^17*g2^14) + (g3^6*t^8.19)/(g1^18*g2^16) + (g3^7*t^8.19)/(g1^19*g2^18) + (g3^8*t^8.19)/(g1^20*g2^20) + (g3^2*t^8.24)/(g1^13*g2^9) + (2*g3^3*t^8.24)/(g1^14*g2^11) + (3*g3^4*t^8.24)/(g1^15*g2^13) + (3*g3^5*t^8.24)/(g1^16*g2^15) + (2*g3^6*t^8.24)/(g1^17*g2^17) + (g3^7*t^8.24)/(g1^18*g2^19) + t^8.28/(g1^10*g2^6) + (2*g3*t^8.28)/(g1^11*g2^8) + (4*g3^2*t^8.28)/(g1^12*g2^10) + (4*g3^3*t^8.28)/(g1^13*g2^12) + (4*g3^4*t^8.28)/(g1^14*g2^14) + (2*g3^5*t^8.28)/(g1^15*g2^16) + (g3^6*t^8.28)/(g1^16*g2^18) + (3*t^8.33)/(g1^9*g2^7) + t^8.33/(g1^7*g2^3*g3^2) + (2*t^8.33)/(g1^8*g2^5*g3) + (4*g3*t^8.33)/(g1^10*g2^9) + (4*g3^2*t^8.33)/(g1^11*g2^11) + (3*g3^3*t^8.33)/(g1^12*g2^13) + (2*g3^4*t^8.33)/(g1^13*g2^15) + (g3^5*t^8.33)/(g1^14*g2^17) + (3*t^8.38)/(g1^8*g2^8) + t^8.38/(g1^4*g3^4) + t^8.38/(g1^5*g2^2*g3^3) + (2*t^8.38)/(g1^6*g2^4*g3^2) + (2*t^8.38)/(g1^7*g2^6*g3) + (2*g3*t^8.38)/(g1^9*g2^10) + (2*g3^2*t^8.38)/(g1^10*g2^12) + (g3^3*t^8.38)/(g1^11*g2^14) + (g3^4*t^8.38)/(g1^12*g2^16) + g1^9*g2^9*t^8.58 + (g2*g3^2*t^8.77)/g1 + (2*g3^3*t^8.77)/(g1^2*g2) + (g3^4*t^8.77)/(g1^3*g2^3) + g1^2*g2^4*t^8.81 + 2*g1*g2^2*g3*t^8.81 + 2*g3^2*t^8.81 + (g3^3*t^8.81)/(g1*g2^2) - 3*g1^3*g2^3*t^8.86 - (g1^4*g2^5*t^8.86)/g3 - g1^2*g2*g3*t^8.86 - (2*g1^6*g2^6*t^8.9)/g3^2 - (2*g1^5*g2^4*t^8.9)/g3 - t^4.05/(g1*g2*y) - (g3*t^6.1)/(g1^5*g2^4*y) - (g3^2*t^6.1)/(g1^6*g2^6*y) - t^6.14/(g1^3*g2^3*y) - t^6.14/(g1^2*g2*g3*y) - (g3*t^6.14)/(g1^4*g2^5*y) + (g3^3*t^7.1)/(g1^9*g2^8*y) + t^7.14/(g1^5*g2^3*y) + (2*g3*t^7.14)/(g1^6*g2^5*y) + (2*g3^2*t^7.14)/(g1^7*g2^7*y) + (g3^3*t^7.14)/(g1^8*g2^9*y) + t^7.19/(g1^4*g2^4*y) + t^7.19/(g1^3*g2^2*g3*y) + (g3*t^7.19)/(g1^5*g2^6*y) + (g3*t^7.91)/(g1*y) + (g3^2*t^7.91)/(g1^2*g2^2*y) + (2*g1*g2*t^7.95)/y + (2*g1^2*g2^3*t^7.95)/(g3*y) + (2*g3*t^7.95)/(g2*y) + (g1^4*g2^4*t^8.)/(g3^2*y) + (g1^3*g2^2*t^8.)/(g3*y) - (g3^2*t^8.14)/(g1^9*g2^7*y) - (g3^3*t^8.14)/(g1^10*g2^9*y) - (g3^4*t^8.14)/(g1^11*g2^11*y) - t^8.19/(g1^6*g2^4*y) - (2*g3*t^8.19)/(g1^7*g2^6*y) - (2*g3^2*t^8.19)/(g1^8*g2^8*y) - (g3^3*t^8.19)/(g1^9*g2^10*y) - (2*t^8.23)/(g1^5*g2^5*y) - t^8.23/(g1^3*g2*g3^2*y) - t^8.23/(g1^4*g2^3*g3*y) - (g3*t^8.23)/(g1^6*g2^7*y) - (g3^2*t^8.23)/(g1^7*g2^9*y) + (g3^2*t^8.91)/(g1^4*g2^2*y) + (2*g3^3*t^8.91)/(g1^5*g2^4*y) + (g3^4*t^8.91)/(g1^6*g2^6*y) + (g2*t^8.95)/(g1*y) + (3*g3*t^8.95)/(g1^2*g2*y) + (3*g3^2*t^8.95)/(g1^3*g2^3*y) + (g3^3*t^8.95)/(g1^4*g2^5*y) - (t^4.05*y)/(g1*g2) - (g3*t^6.1*y)/(g1^5*g2^4) - (g3^2*t^6.1*y)/(g1^6*g2^6) - (t^6.14*y)/(g1^3*g2^3) - (t^6.14*y)/(g1^2*g2*g3) - (g3*t^6.14*y)/(g1^4*g2^5) + (g3^3*t^7.1*y)/(g1^9*g2^8) + (t^7.14*y)/(g1^5*g2^3) + (2*g3*t^7.14*y)/(g1^6*g2^5) + (2*g3^2*t^7.14*y)/(g1^7*g2^7) + (g3^3*t^7.14*y)/(g1^8*g2^9) + (t^7.19*y)/(g1^4*g2^4) + (t^7.19*y)/(g1^3*g2^2*g3) + (g3*t^7.19*y)/(g1^5*g2^6) + (g3*t^7.91*y)/g1 + (g3^2*t^7.91*y)/(g1^2*g2^2) + 2*g1*g2*t^7.95*y + (2*g1^2*g2^3*t^7.95*y)/g3 + (2*g3*t^7.95*y)/g2 + (g1^4*g2^4*t^8.*y)/g3^2 + (g1^3*g2^2*t^8.*y)/g3 - (g3^2*t^8.14*y)/(g1^9*g2^7) - (g3^3*t^8.14*y)/(g1^10*g2^9) - (g3^4*t^8.14*y)/(g1^11*g2^11) - (t^8.19*y)/(g1^6*g2^4) - (2*g3*t^8.19*y)/(g1^7*g2^6) - (2*g3^2*t^8.19*y)/(g1^8*g2^8) - (g3^3*t^8.19*y)/(g1^9*g2^10) - (2*t^8.23*y)/(g1^5*g2^5) - (t^8.23*y)/(g1^3*g2*g3^2) - (t^8.23*y)/(g1^4*g2^3*g3) - (g3*t^8.23*y)/(g1^6*g2^7) - (g3^2*t^8.23*y)/(g1^7*g2^9) + (g3^2*t^8.91*y)/(g1^4*g2^2) + (2*g3^3*t^8.91*y)/(g1^5*g2^4) + (g3^4*t^8.91*y)/(g1^6*g2^6) + (g2*t^8.95*y)/g1 + (3*g3*t^8.95*y)/(g1^2*g2) + (3*g3^2*t^8.95*y)/(g1^3*g2^3) + (g3^3*t^8.95*y)/(g1^4*g2^5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46141 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ | 0.6896 | 0.8756 | 0.7876 | [X:[], M:[0.6901, 0.6901, 0.6833, 0.7038], q:[0.4841, 0.8258], qb:[0.8258, 0.4705], phi:[0.3485]] | t^2.05 + 2*t^2.07 + t^2.09 + t^2.11 + t^2.86 + t^3.87 + t^3.89 + t^3.91 + t^4.1 + 2*t^4.12 + 4*t^4.14 + 3*t^4.16 + 3*t^4.18 + t^4.2 + t^4.22 + t^4.91 + 2*t^4.93 + 2*t^4.95 + t^4.98 + t^5.73 + t^5.92 + 3*t^5.94 + 3*t^5.96 + 2*t^5.98 - t^6. - t^4.05/y - t^4.05*y | detail | |
46164 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ | 0.7103 | 0.916 | 0.7755 | [X:[], M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] | 2*t^2.04 + 4*t^2.08 + t^2.87 + 2*t^3.88 + 3*t^4.09 + 8*t^4.13 + 10*t^4.17 + 2*t^4.92 + 5*t^4.96 + t^5.75 + 4*t^5.92 + 6*t^5.96 - 5*t^6. - t^4.04/y - t^4.04*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45886 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ | 0.6693 | 0.8377 | 0.7989 | [X:[], M:[0.6919, 0.6919, 0.6801], q:[0.4841, 0.8241], qb:[0.8241, 0.4605], phi:[0.3518]] | t^2.04 + 2*t^2.08 + t^2.11 + t^2.83 + t^3.82 + 2*t^3.85 + t^3.89 + t^4.08 + 2*t^4.12 + 4*t^4.15 + 2*t^4.19 + t^4.22 + t^4.87 + 2*t^4.91 + 2*t^4.94 + t^5.67 + t^5.86 + 4*t^5.89 + 5*t^5.93 + 2*t^5.96 - 2*t^6. - t^4.06/y - t^4.06*y | detail |