Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46461 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ \phi_1\tilde{q}_1^2$ 0.7102 0.9155 0.7758 [X:[], M:[0.6877, 0.6877, 0.6815, 0.6999, 0.6938], q:[0.4858, 0.8266], qb:[0.8266, 0.4736], phi:[0.3469]] [X:[], M:[[-7, 1], [-7, 1], [-10, 2], [-1, -1], [-4, 0]], q:[[6, -1], [1, 0]], qb:[[1, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_2$, $ M_5$, $ \phi_1^2$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_3M_4$, $ M_1M_5$, $ M_2M_5$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_2M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_4^2$, $ M_3q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$ $\phi_1q_2^2$, $ M_4\tilde{q}_1\tilde{q}_2$ -2 t^2.04 + 2*t^2.06 + 2*t^2.08 + t^2.1 + t^2.88 + t^3.88 + t^3.9 + t^4.09 + 2*t^4.11 + 5*t^4.13 + 5*t^4.14 + 5*t^4.16 + 2*t^4.18 + t^4.2 + t^4.92 + 2*t^4.94 + 3*t^4.96 + t^4.98 + t^5.76 + t^5.93 + 3*t^5.94 + 3*t^5.96 + t^5.98 - 2*t^6. - 2*t^6.02 - t^6.04 + t^6.13 + 2*t^6.15 + 5*t^6.17 + 9*t^6.19 + 11*t^6.21 + 11*t^6.23 + 9*t^6.24 + 5*t^6.26 + 2*t^6.28 + t^6.3 + t^6.76 + t^6.78 + t^6.97 + 2*t^6.99 + 5*t^7. + 5*t^7.02 + 5*t^7.04 + t^7.06 + t^7.76 + t^7.78 + t^7.8 - t^7.86 - t^7.87 + t^7.97 + 3*t^7.99 + 6*t^8.01 + 6*t^8.03 + t^8.04 - 6*t^8.06 - 9*t^8.08 - 8*t^8.1 - 4*t^8.12 - t^8.14 + t^8.18 + 2*t^8.2 + 5*t^8.22 + 9*t^8.23 + 16*t^8.25 + 19*t^8.27 + 22*t^8.29 + 19*t^8.31 + 16*t^8.33 + 9*t^8.34 + 5*t^8.36 + 2*t^8.38 + t^8.4 + t^8.63 + t^8.8 + 3*t^8.82 + 3*t^8.84 - 4*t^8.88 - 4*t^8.9 - 2*t^8.91 - t^4.04/y - t^6.09/y - (2*t^6.1)/y - (2*t^6.12)/y - t^6.14/y + (2*t^7.11)/y + (3*t^7.13)/y + (5*t^7.14)/y + (3*t^7.16)/y + (2*t^7.18)/y + t^7.92/y + (3*t^7.94)/y + (4*t^7.96)/y + (3*t^7.98)/y + t^8./y - t^8.13/y - (2*t^8.15)/y - (5*t^8.17)/y - (5*t^8.18)/y - (5*t^8.2)/y - (2*t^8.22)/y - t^8.24/y + t^8.93/y + (3*t^8.94)/y + (4*t^8.96)/y + (3*t^8.98)/y - t^4.04*y - t^6.09*y - 2*t^6.1*y - 2*t^6.12*y - t^6.14*y + 2*t^7.11*y + 3*t^7.13*y + 5*t^7.14*y + 3*t^7.16*y + 2*t^7.18*y + t^7.92*y + 3*t^7.94*y + 4*t^7.96*y + 3*t^7.98*y + t^8.*y - t^8.13*y - 2*t^8.15*y - 5*t^8.17*y - 5*t^8.18*y - 5*t^8.2*y - 2*t^8.22*y - t^8.24*y + t^8.93*y + 3*t^8.94*y + 4*t^8.96*y + 3*t^8.98*y (g2^2*t^2.04)/g1^10 + (2*g2*t^2.06)/g1^7 + (2*t^2.08)/g1^4 + t^2.1/(g1*g2) + g1^6*t^2.88 + (g2^2*t^3.88)/g1^2 + g1*g2*t^3.9 + (g2^4*t^4.09)/g1^20 + (2*g2^3*t^4.11)/g1^17 + (5*g2^2*t^4.13)/g1^14 + (5*g2*t^4.14)/g1^11 + (5*t^4.16)/g1^8 + (2*t^4.18)/(g1^5*g2) + t^4.2/(g1^2*g2^2) + (g2^2*t^4.92)/g1^4 + (2*g2*t^4.94)/g1 + 3*g1^2*t^4.96 + (g1^5*t^4.98)/g2 + g1^12*t^5.76 + (g2^4*t^5.93)/g1^12 + (3*g2^3*t^5.94)/g1^9 + (3*g2^2*t^5.96)/g1^6 + (g2*t^5.98)/g1^3 - 2*t^6. - (2*g1^3*t^6.02)/g2 - (g1^6*t^6.04)/g2^2 + (g2^6*t^6.13)/g1^30 + (2*g2^5*t^6.15)/g1^27 + (5*g2^4*t^6.17)/g1^24 + (9*g2^3*t^6.19)/g1^21 + (11*g2^2*t^6.21)/g1^18 + (11*g2*t^6.23)/g1^15 + (9*t^6.24)/g1^12 + (5*t^6.26)/(g1^9*g2) + (2*t^6.28)/(g1^6*g2^2) + t^6.3/(g1^3*g2^3) + g1^4*g2^2*t^6.76 + g1^7*g2*t^6.78 + (g2^4*t^6.97)/g1^14 + (2*g2^3*t^6.99)/g1^11 + (5*g2^2*t^7.)/g1^8 + (5*g2*t^7.02)/g1^5 + (5*t^7.04)/g1^2 + (g1*t^7.06)/g2 + (g2^4*t^7.76)/g1^4 + (g2^3*t^7.78)/g1 + g1^2*g2^2*t^7.8 - (g1^11*t^7.86)/g2 - (g1^14*t^7.87)/g2^2 + (g2^6*t^7.97)/g1^22 + (3*g2^5*t^7.99)/g1^19 + (6*g2^4*t^8.01)/g1^16 + (6*g2^3*t^8.03)/g1^13 + (g2^2*t^8.04)/g1^10 - (6*g2*t^8.06)/g1^7 - (9*t^8.08)/g1^4 - (8*t^8.1)/(g1*g2) - (4*g1^2*t^8.12)/g2^2 - (g1^5*t^8.14)/g2^3 + (g2^8*t^8.18)/g1^40 + (2*g2^7*t^8.2)/g1^37 + (5*g2^6*t^8.22)/g1^34 + (9*g2^5*t^8.23)/g1^31 + (16*g2^4*t^8.25)/g1^28 + (19*g2^3*t^8.27)/g1^25 + (22*g2^2*t^8.29)/g1^22 + (19*g2*t^8.31)/g1^19 + (16*t^8.33)/g1^16 + (9*t^8.34)/(g1^13*g2) + (5*t^8.36)/(g1^10*g2^2) + (2*t^8.38)/(g1^7*g2^3) + t^8.4/(g1^4*g2^4) + g1^18*t^8.63 + (g2^4*t^8.8)/g1^6 + (3*g2^3*t^8.82)/g1^3 + 3*g2^2*t^8.84 - 4*g1^6*t^8.88 - (4*g1^9*t^8.9)/g2 - (2*g1^12*t^8.91)/g2^2 - t^4.04/(g1^2*y) - (g2^2*t^6.09)/(g1^12*y) - (2*g2*t^6.1)/(g1^9*y) - (2*t^6.12)/(g1^6*y) - t^6.14/(g1^3*g2*y) + (2*g2^3*t^7.11)/(g1^17*y) + (3*g2^2*t^7.13)/(g1^14*y) + (5*g2*t^7.14)/(g1^11*y) + (3*t^7.16)/(g1^8*y) + (2*t^7.18)/(g1^5*g2*y) + (g2^2*t^7.92)/(g1^4*y) + (3*g2*t^7.94)/(g1*y) + (4*g1^2*t^7.96)/y + (3*g1^5*t^7.98)/(g2*y) + (g1^8*t^8.)/(g2^2*y) - (g2^4*t^8.13)/(g1^22*y) - (2*g2^3*t^8.15)/(g1^19*y) - (5*g2^2*t^8.17)/(g1^16*y) - (5*g2*t^8.18)/(g1^13*y) - (5*t^8.2)/(g1^10*y) - (2*t^8.22)/(g1^7*g2*y) - t^8.24/(g1^4*g2^2*y) + (g2^4*t^8.93)/(g1^12*y) + (3*g2^3*t^8.94)/(g1^9*y) + (4*g2^2*t^8.96)/(g1^6*y) + (3*g2*t^8.98)/(g1^3*y) - (t^4.04*y)/g1^2 - (g2^2*t^6.09*y)/g1^12 - (2*g2*t^6.1*y)/g1^9 - (2*t^6.12*y)/g1^6 - (t^6.14*y)/(g1^3*g2) + (2*g2^3*t^7.11*y)/g1^17 + (3*g2^2*t^7.13*y)/g1^14 + (5*g2*t^7.14*y)/g1^11 + (3*t^7.16*y)/g1^8 + (2*t^7.18*y)/(g1^5*g2) + (g2^2*t^7.92*y)/g1^4 + (3*g2*t^7.94*y)/g1 + 4*g1^2*t^7.96*y + (3*g1^5*t^7.98*y)/g2 + (g1^8*t^8.*y)/g2^2 - (g2^4*t^8.13*y)/g1^22 - (2*g2^3*t^8.15*y)/g1^19 - (5*g2^2*t^8.17*y)/g1^16 - (5*g2*t^8.18*y)/g1^13 - (5*t^8.2*y)/g1^10 - (2*t^8.22*y)/(g1^7*g2) - (t^8.24*y)/(g1^4*g2^2) + (g2^4*t^8.93*y)/g1^12 + (3*g2^3*t^8.94*y)/g1^9 + (4*g2^2*t^8.96*y)/g1^6 + (3*g2*t^8.98*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46164 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ 0.7103 0.916 0.7755 [X:[], M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] 2*t^2.04 + 4*t^2.08 + t^2.87 + 2*t^3.88 + 3*t^4.09 + 8*t^4.13 + 10*t^4.17 + 2*t^4.92 + 5*t^4.96 + t^5.75 + 4*t^5.92 + 6*t^5.96 - 5*t^6. - t^4.04/y - t^4.04*y detail