Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46461 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ | 0.7102 | 0.9155 | 0.7758 | [M:[0.6877, 0.6877, 0.6815, 0.6999, 0.6938], q:[0.4858, 0.8266], qb:[0.8266, 0.4736], phi:[0.3469]] | [M:[[-7, 1], [-7, 1], [-10, 2], [-1, -1], [-4, 0]], q:[[6, -1], [1, 0]], qb:[[1, 0], [0, 1]], phi:[[-2, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | ${}\phi_{1}q_{2}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | t^2.045 + 2*t^2.063 + 2*t^2.081 + t^2.1 + t^2.878 + t^3.882 + t^3.9 + t^4.089 + 2*t^4.108 + 5*t^4.126 + 5*t^4.144 + 5*t^4.163 + 2*t^4.181 + t^4.199 + t^4.923 + 2*t^4.941 + 3*t^4.959 + t^4.978 + t^5.756 + t^5.927 + 3*t^5.945 + 3*t^5.963 + t^5.982 - 2*t^6. - 2*t^6.018 - t^6.037 + t^6.134 + 2*t^6.152 + 5*t^6.171 + 9*t^6.189 + 11*t^6.207 + 11*t^6.226 + 9*t^6.244 + 5*t^6.262 + 2*t^6.281 + t^6.299 + t^6.76 + t^6.778 + t^6.967 + 2*t^6.986 + 5*t^7.004 + 5*t^7.022 + 5*t^7.041 + t^7.059 + t^7.764 + t^7.782 + t^7.801 - t^7.856 - t^7.874 + t^7.971 + 3*t^7.99 + 6*t^8.008 + 6*t^8.026 + t^8.045 - 6*t^8.063 - 9*t^8.081 - 8*t^8.1 - 4*t^8.118 - t^8.136 + t^8.179 + 2*t^8.197 + 5*t^8.215 + 9*t^8.234 + 16*t^8.252 + 19*t^8.27 + 22*t^8.289 + 19*t^8.307 + 16*t^8.325 + 9*t^8.344 + 5*t^8.362 + 2*t^8.38 + t^8.399 + t^8.634 + t^8.805 + 3*t^8.823 + 3*t^8.841 - 4*t^8.878 - 4*t^8.896 - 2*t^8.915 - t^4.041/y - t^6.085/y - (2*t^6.104)/y - (2*t^6.122)/y - t^6.14/y + (2*t^7.108)/y + (3*t^7.126)/y + (5*t^7.144)/y + (3*t^7.163)/y + (2*t^7.181)/y + t^7.923/y + (3*t^7.941)/y + (4*t^7.959)/y + (3*t^7.978)/y + t^7.996/y - t^8.13/y - (2*t^8.148)/y - (5*t^8.167)/y - (5*t^8.185)/y - (5*t^8.203)/y - (2*t^8.222)/y - t^8.24/y + t^8.927/y + (3*t^8.945)/y + (4*t^8.963)/y + (3*t^8.982)/y - t^4.041*y - t^6.085*y - 2*t^6.104*y - 2*t^6.122*y - t^6.14*y + 2*t^7.108*y + 3*t^7.126*y + 5*t^7.144*y + 3*t^7.163*y + 2*t^7.181*y + t^7.923*y + 3*t^7.941*y + 4*t^7.959*y + 3*t^7.978*y + t^7.996*y - t^8.13*y - 2*t^8.148*y - 5*t^8.167*y - 5*t^8.185*y - 5*t^8.203*y - 2*t^8.222*y - t^8.24*y + t^8.927*y + 3*t^8.945*y + 4*t^8.963*y + 3*t^8.982*y | (g2^2*t^2.045)/g1^10 + (2*g2*t^2.063)/g1^7 + (2*t^2.081)/g1^4 + t^2.1/(g1*g2) + g1^6*t^2.878 + (g2^2*t^3.882)/g1^2 + g1*g2*t^3.9 + (g2^4*t^4.089)/g1^20 + (2*g2^3*t^4.108)/g1^17 + (5*g2^2*t^4.126)/g1^14 + (5*g2*t^4.144)/g1^11 + (5*t^4.163)/g1^8 + (2*t^4.181)/(g1^5*g2) + t^4.199/(g1^2*g2^2) + (g2^2*t^4.923)/g1^4 + (2*g2*t^4.941)/g1 + 3*g1^2*t^4.959 + (g1^5*t^4.978)/g2 + g1^12*t^5.756 + (g2^4*t^5.927)/g1^12 + (3*g2^3*t^5.945)/g1^9 + (3*g2^2*t^5.963)/g1^6 + (g2*t^5.982)/g1^3 - 2*t^6. - (2*g1^3*t^6.018)/g2 - (g1^6*t^6.037)/g2^2 + (g2^6*t^6.134)/g1^30 + (2*g2^5*t^6.152)/g1^27 + (5*g2^4*t^6.171)/g1^24 + (9*g2^3*t^6.189)/g1^21 + (11*g2^2*t^6.207)/g1^18 + (11*g2*t^6.226)/g1^15 + (9*t^6.244)/g1^12 + (5*t^6.262)/(g1^9*g2) + (2*t^6.281)/(g1^6*g2^2) + t^6.299/(g1^3*g2^3) + g1^4*g2^2*t^6.76 + g1^7*g2*t^6.778 + (g2^4*t^6.967)/g1^14 + (2*g2^3*t^6.986)/g1^11 + (5*g2^2*t^7.004)/g1^8 + (5*g2*t^7.022)/g1^5 + (5*t^7.041)/g1^2 + (g1*t^7.059)/g2 + (g2^4*t^7.764)/g1^4 + (g2^3*t^7.782)/g1 + g1^2*g2^2*t^7.801 - (g1^11*t^7.856)/g2 - (g1^14*t^7.874)/g2^2 + (g2^6*t^7.971)/g1^22 + (3*g2^5*t^7.99)/g1^19 + (6*g2^4*t^8.008)/g1^16 + (6*g2^3*t^8.026)/g1^13 + (g2^2*t^8.045)/g1^10 - (6*g2*t^8.063)/g1^7 - (9*t^8.081)/g1^4 - (8*t^8.1)/(g1*g2) - (4*g1^2*t^8.118)/g2^2 - (g1^5*t^8.136)/g2^3 + (g2^8*t^8.179)/g1^40 + (2*g2^7*t^8.197)/g1^37 + (5*g2^6*t^8.215)/g1^34 + (9*g2^5*t^8.234)/g1^31 + (16*g2^4*t^8.252)/g1^28 + (19*g2^3*t^8.27)/g1^25 + (22*g2^2*t^8.289)/g1^22 + (19*g2*t^8.307)/g1^19 + (16*t^8.325)/g1^16 + (9*t^8.344)/(g1^13*g2) + (5*t^8.362)/(g1^10*g2^2) + (2*t^8.38)/(g1^7*g2^3) + t^8.399/(g1^4*g2^4) + g1^18*t^8.634 + (g2^4*t^8.805)/g1^6 + (3*g2^3*t^8.823)/g1^3 + 3*g2^2*t^8.841 - 4*g1^6*t^8.878 - (4*g1^9*t^8.896)/g2 - (2*g1^12*t^8.915)/g2^2 - t^4.041/(g1^2*y) - (g2^2*t^6.085)/(g1^12*y) - (2*g2*t^6.104)/(g1^9*y) - (2*t^6.122)/(g1^6*y) - t^6.14/(g1^3*g2*y) + (2*g2^3*t^7.108)/(g1^17*y) + (3*g2^2*t^7.126)/(g1^14*y) + (5*g2*t^7.144)/(g1^11*y) + (3*t^7.163)/(g1^8*y) + (2*t^7.181)/(g1^5*g2*y) + (g2^2*t^7.923)/(g1^4*y) + (3*g2*t^7.941)/(g1*y) + (4*g1^2*t^7.959)/y + (3*g1^5*t^7.978)/(g2*y) + (g1^8*t^7.996)/(g2^2*y) - (g2^4*t^8.13)/(g1^22*y) - (2*g2^3*t^8.148)/(g1^19*y) - (5*g2^2*t^8.167)/(g1^16*y) - (5*g2*t^8.185)/(g1^13*y) - (5*t^8.203)/(g1^10*y) - (2*t^8.222)/(g1^7*g2*y) - t^8.24/(g1^4*g2^2*y) + (g2^4*t^8.927)/(g1^12*y) + (3*g2^3*t^8.945)/(g1^9*y) + (4*g2^2*t^8.963)/(g1^6*y) + (3*g2*t^8.982)/(g1^3*y) - (t^4.041*y)/g1^2 - (g2^2*t^6.085*y)/g1^12 - (2*g2*t^6.104*y)/g1^9 - (2*t^6.122*y)/g1^6 - (t^6.14*y)/(g1^3*g2) + (2*g2^3*t^7.108*y)/g1^17 + (3*g2^2*t^7.126*y)/g1^14 + (5*g2*t^7.144*y)/g1^11 + (3*t^7.163*y)/g1^8 + (2*t^7.181*y)/(g1^5*g2) + (g2^2*t^7.923*y)/g1^4 + (3*g2*t^7.941*y)/g1 + 4*g1^2*t^7.959*y + (3*g1^5*t^7.978*y)/g2 + (g1^8*t^7.996*y)/g2^2 - (g2^4*t^8.13*y)/g1^22 - (2*g2^3*t^8.148*y)/g1^19 - (5*g2^2*t^8.167*y)/g1^16 - (5*g2*t^8.185*y)/g1^13 - (5*t^8.203*y)/g1^10 - (2*t^8.222*y)/(g1^7*g2) - (t^8.24*y)/(g1^4*g2^2) + (g2^4*t^8.927*y)/g1^12 + (3*g2^3*t^8.945*y)/g1^9 + (4*g2^2*t^8.963*y)/g1^6 + (3*g2*t^8.982*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46164 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ | 0.7103 | 0.916 | 0.7755 | [M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] | 2*t^2.043 + 4*t^2.084 + t^2.874 + 2*t^3.876 + 3*t^4.086 + 8*t^4.127 + 10*t^4.168 + 2*t^4.918 + 5*t^4.958 + t^5.749 + 4*t^5.919 + 6*t^5.959 - 5*t^6. - t^4.042/y - t^4.042*y | detail |