Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45969 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6216 | 0.8089 | 0.7684 | [M:[0.9496, 0.7292, 0.9496], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] | [M:[[4, 4], [-5, 7], [4, 4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | 2*t^2.188 + t^2.237 + t^2.547 + 2*t^2.849 + t^3.453 + t^3.461 + t^3.51 + t^3.763 + t^4.073 + t^4.122 + t^4.171 + 3*t^4.375 + 2*t^4.424 + t^4.474 + 2*t^4.734 + t^4.783 + 4*t^5.036 + 2*t^5.086 + t^5.093 + 2*t^5.395 + t^5.641 + 2*t^5.649 + 5*t^5.698 + t^5.747 + t^5.951 - 2*t^6. + t^6.007 - t^6.049 + t^6.057 + 2*t^6.261 + 4*t^6.31 + 3*t^6.359 + t^6.408 + 4*t^6.563 + 3*t^6.612 + t^6.62 + t^6.669 + t^6.71 + t^6.718 + t^6.907 - t^6.914 + 5*t^6.922 - t^6.964 + 4*t^6.971 + 3*t^7.02 + 6*t^7.224 - t^7.266 + 2*t^7.273 + 2*t^7.281 + t^7.323 + t^7.33 + t^7.534 - 3*t^7.576 + 5*t^7.583 - t^7.625 + 3*t^7.632 + t^7.64 + t^7.682 + t^7.829 + 4*t^7.836 - t^7.878 + 7*t^7.885 + 3*t^7.935 + 2*t^7.942 + t^7.984 + t^8.138 + t^8.146 - 6*t^8.188 + 3*t^8.195 - 5*t^8.237 + 6*t^8.244 - t^8.286 + 2*t^8.294 + t^8.343 + 3*t^8.448 - 2*t^8.49 + 6*t^8.497 - 2*t^8.539 + 6*t^8.547 + t^8.554 + 2*t^8.596 + t^8.603 + t^8.645 + 5*t^8.75 + 2*t^8.8 + 2*t^8.807 - 8*t^8.849 + 4*t^8.856 - 2*t^8.898 + 3*t^8.906 + t^8.947 + t^8.955 - t^4.576/y - t^6.763/y + t^7.375/y + t^7.424/y + t^7.727/y + (2*t^7.734)/y + t^7.783/y + (4*t^8.036)/y + (2*t^8.086)/y + t^8.388/y + (2*t^8.395)/y + (2*t^8.641)/y + (2*t^8.649)/y + t^8.69/y + (4*t^8.698)/y + t^8.747/y + t^8.951/y - t^4.576*y - t^6.763*y + t^7.375*y + t^7.424*y + t^7.727*y + 2*t^7.734*y + t^7.783*y + 4*t^8.036*y + 2*t^8.086*y + t^8.388*y + 2*t^8.395*y + 2*t^8.641*y + 2*t^8.649*y + t^8.69*y + 4*t^8.698*y + t^8.747*y + t^8.951*y | (2*g2^7*t^2.188)/g1^5 + (g1^7*t^2.237)/g2^5 + g1^12*g2^12*t^2.547 + 2*g1^4*g2^4*t^2.849 + t^3.453/(g1^12*g2^12) + g1*g2^13*t^3.461 + g1^13*g2*t^3.51 + (g2^5*t^3.763)/g1^7 + (g2^22*t^4.073)/g1^2 + g1^10*g2^10*t^4.122 + (g1^22*t^4.171)/g2^2 + (3*g2^14*t^4.375)/g1^10 + 2*g1^2*g2^2*t^4.424 + (g1^14*t^4.474)/g2^10 + 2*g1^7*g2^19*t^4.734 + g1^19*g2^7*t^4.783 + (4*g2^11*t^5.036)/g1 + (2*g1^11*t^5.086)/g2 + g1^24*g2^24*t^5.093 + 2*g1^16*g2^16*t^5.395 + t^5.641/(g1^17*g2^5) + (2*g2^20*t^5.649)/g1^4 + 5*g1^8*g2^8*t^5.698 + (g1^20*t^5.747)/g2^4 + (g2^12*t^5.951)/g1^12 - 2*t^6. + g1^13*g2^25*t^6.007 - (g1^12*t^6.049)/g2^12 + g1^25*g2^13*t^6.057 + (2*g2^29*t^6.261)/g1^7 + 4*g1^5*g2^17*t^6.31 + 3*g1^17*g2^5*t^6.359 + (g1^29*t^6.408)/g2^7 + (4*g2^21*t^6.563)/g1^15 + (3*g2^9*t^6.612)/g1^3 + g1^10*g2^34*t^6.62 + g1^22*g2^22*t^6.669 + (g1^21*t^6.71)/g2^15 + g1^34*g2^10*t^6.718 + t^6.907/(g1^24*g2^24) - (g2*t^6.914)/g1^11 + 5*g1^2*g2^26*t^6.922 - (g1*t^6.964)/g2^11 + 4*g1^14*g2^14*t^6.971 + 3*g1^26*g2^2*t^7.02 + (6*g2^18*t^7.224)/g1^6 - t^7.266/(g1^7*g2^19) + 2*g1^6*g2^6*t^7.273 + 2*g1^19*g2^31*t^7.281 + (g1^18*t^7.323)/g2^6 + g1^31*g2^19*t^7.33 + (g2^35*t^7.534)/g1 - (3*t^7.576)/(g1^2*g2^2) + 5*g1^11*g2^23*t^7.583 - (g1^10*t^7.625)/g2^14 + 3*g1^23*g2^11*t^7.632 + g1^36*g2^36*t^7.64 + (g1^35*t^7.682)/g2 + (g2^2*t^7.829)/g1^22 + (4*g2^27*t^7.836)/g1^9 - t^7.878/(g1^10*g2^10) + 7*g1^3*g2^15*t^7.885 + 3*g1^15*g2^3*t^7.935 + 2*g1^28*g2^28*t^7.942 + (g1^27*t^7.984)/g2^9 + (g2^19*t^8.138)/g1^17 + (g2^44*t^8.146)/g1^4 - (6*g2^7*t^8.188)/g1^5 + 3*g1^8*g2^32*t^8.195 - (5*g1^7*t^8.237)/g2^5 + 6*g1^20*g2^20*t^8.244 - (g1^19*t^8.286)/g2^17 + 2*g1^32*g2^8*t^8.294 + (g1^44*t^8.343)/g2^4 + (3*g2^36*t^8.448)/g1^12 - (2*t^8.49)/(g1^13*g2) + 6*g2^24*t^8.497 - (2*t^8.539)/(g1*g2^13) + 6*g1^12*g2^12*t^8.547 + g1^25*g2^37*t^8.554 + 2*g1^24*t^8.596 + g1^37*g2^25*t^8.603 + (g1^36*t^8.645)/g2^12 + (5*g2^28*t^8.75)/g1^20 + (2*g2^16*t^8.8)/g1^8 + 2*g1^5*g2^41*t^8.807 - 8*g1^4*g2^4*t^8.849 + 4*g1^17*g2^29*t^8.856 - (2*g1^16*t^8.898)/g2^8 + 3*g1^29*g2^17*t^8.906 + (g1^28*t^8.947)/g2^20 + g1^41*g2^5*t^8.955 - t^4.576/(g1^2*g2^2*y) - (g2^5*t^6.763)/(g1^7*y) + (g2^14*t^7.375)/(g1^10*y) + (g1^2*g2^2*t^7.424)/y + t^7.727/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.734)/y + (g1^19*g2^7*t^7.783)/y + (4*g2^11*t^8.036)/(g1*y) + (2*g1^11*t^8.086)/(g2*y) + (g1^3*t^8.388)/(g2^9*y) + (2*g1^16*g2^16*t^8.395)/y + (2*t^8.641)/(g1^17*g2^5*y) + (2*g2^20*t^8.649)/(g1^4*y) + t^8.69/(g1^5*g2^17*y) + (4*g1^8*g2^8*t^8.698)/y + (g1^20*t^8.747)/(g2^4*y) + (g2^12*t^8.951)/(g1^12*y) - (t^4.576*y)/(g1^2*g2^2) - (g2^5*t^6.763*y)/g1^7 + (g2^14*t^7.375*y)/g1^10 + g1^2*g2^2*t^7.424*y + (t^7.727*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.734*y + g1^19*g2^7*t^7.783*y + (4*g2^11*t^8.036*y)/g1 + (2*g1^11*t^8.086*y)/g2 + (g1^3*t^8.388*y)/g2^9 + 2*g1^16*g2^16*t^8.395*y + (2*t^8.641*y)/(g1^17*g2^5) + (2*g2^20*t^8.649*y)/g1^4 + (t^8.69*y)/(g1^5*g2^17) + 4*g1^8*g2^8*t^8.698*y + (g1^20*t^8.747*y)/g2^4 + (g2^12*t^8.951*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46242 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.6409 | 0.8444 | 0.759 | [M:[0.9489, 0.7372, 0.9489, 0.7372], q:[0.7372, 0.3139], qb:[0.4233, 0.4233], phi:[0.5256]] | 4*t^2.212 + t^2.54 + 2*t^2.847 + t^3.46 + 2*t^3.481 + 3*t^4.116 + 10*t^4.423 + 4*t^4.751 + 8*t^5.058 + t^5.079 + 2*t^5.386 + 2*t^5.672 + 10*t^5.693 - 5*t^6. - t^4.577/y - t^4.577*y | detail | |
46295 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6106 | 0.7864 | 0.7765 | [M:[0.9696, 0.7332, 0.9696, 1.0912], q:[0.7424, 0.288], qb:[0.4636, 0.4453], phi:[0.5152]] | 2*t^2.2 + t^2.255 + 2*t^2.909 + 2*t^3.274 + t^3.563 + t^3.618 + t^3.745 + t^4.217 + t^4.272 + t^4.327 + 3*t^4.399 + 2*t^4.454 + t^4.509 + 4*t^5.109 + 2*t^5.163 + 3*t^5.473 + t^5.528 + 2*t^5.763 + 5*t^5.818 + t^5.873 + t^5.945 - 3*t^6. - t^4.546/y - t^4.546*y | detail | |
46258 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | 0.6214 | 0.8083 | 0.7688 | [M:[0.9495, 0.7374, 0.9495], q:[0.7374, 0.3131], qb:[0.4243, 0.4243], phi:[0.5252]] | 3*t^2.212 + t^2.546 + 2*t^2.849 + t^3.454 + 2*t^3.485 + t^3.788 + 3*t^4.121 + 6*t^4.424 + 3*t^4.758 + 6*t^5.061 + t^5.091 + 2*t^5.394 + t^5.666 + 8*t^5.697 - 2*t^6. - t^4.576/y - t^4.576*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45920 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6172 | 0.7998 | 0.7717 | [M:[0.9566, 0.7306], q:[0.7392, 0.3042], qb:[0.4435, 0.4264], phi:[0.5217]] | 2*t^2.192 + t^2.243 + t^2.61 + t^2.87 + t^3.13 + t^3.39 + t^3.497 + t^3.548 + t^3.757 + t^4.124 + t^4.175 + t^4.226 + 3*t^4.384 + 2*t^4.435 + t^4.486 + 2*t^4.802 + t^4.853 + 2*t^5.062 + t^5.113 + t^5.219 + 2*t^5.322 + t^5.373 + t^5.48 + t^5.582 + 2*t^5.689 + 4*t^5.74 + t^5.791 + t^5.949 - t^6. - t^4.565/y - t^4.565*y | detail |