Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46295 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6106 | 0.7864 | 0.7765 | [X:[], M:[0.9696, 0.7332, 0.9696, 1.0912], q:[0.7424, 0.288], qb:[0.4636, 0.4453], phi:[0.5152]] | [X:[], M:[[4, 4], [-5, 7], [4, 4], [-12, -12]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | 2*t^2.2 + t^2.25 + 2*t^2.91 + 2*t^3.27 + t^3.56 + t^3.62 + t^3.75 + t^4.22 + t^4.27 + t^4.33 + 3*t^4.4 + 2*t^4.45 + t^4.51 + 4*t^5.11 + 2*t^5.16 + 3*t^5.47 + t^5.53 + 2*t^5.76 + 5*t^5.82 + t^5.87 + t^5.95 - 3*t^6. - t^6.05 + 2*t^6.18 + 2*t^6.42 + 3*t^6.47 + 3*t^6.53 + 3*t^6.55 + t^6.58 + 4*t^6.6 + 3*t^6.65 + t^6.76 + t^7.02 - t^7.07 + 2*t^7.13 + 2*t^7.18 + 2*t^7.24 + 6*t^7.31 + 2*t^7.36 + t^7.42 + t^7.49 - 2*t^7.55 + 4*t^7.67 + t^7.73 + 2*t^7.78 + t^7.84 + t^7.89 + t^7.94 + 4*t^7.96 + 7*t^8.02 + 3*t^8.07 + t^8.13 + t^8.14 - 7*t^8.2 - 5*t^8.25 - t^8.31 + 2*t^8.38 + t^8.43 + t^8.49 + t^8.54 + t^8.6 + 3*t^8.62 + t^8.65 + 5*t^8.67 + 8*t^8.73 + 4*t^8.75 + 3*t^8.78 + 6*t^8.8 + t^8.84 + 2*t^8.85 - 8*t^8.91 - 2*t^8.96 - t^4.55/y - t^6.75/y + t^7.27/y + t^7.4/y + t^7.45/y + t^7.64/y - t^7.82/y + (4*t^8.11)/y + (2*t^8.16)/y + t^8.35/y + (4*t^8.47)/y + (2*t^8.53)/y + (2*t^8.76)/y + (4*t^8.82)/y + t^8.87/y + t^8.95/y - t^4.55*y - t^6.75*y + t^7.27*y + t^7.4*y + t^7.45*y + t^7.64*y - t^7.82*y + 4*t^8.11*y + 2*t^8.16*y + t^8.35*y + 4*t^8.47*y + 2*t^8.53*y + 2*t^8.76*y + 4*t^8.82*y + t^8.87*y + t^8.95*y | (2*g2^7*t^2.2)/g1^5 + (g1^7*t^2.25)/g2^5 + 2*g1^4*g2^4*t^2.91 + (2*t^3.27)/(g1^12*g2^12) + g1*g2^13*t^3.56 + g1^13*g2*t^3.62 + (g2^5*t^3.75)/g1^7 + (g2^22*t^4.22)/g1^2 + g1^10*g2^10*t^4.27 + (g1^22*t^4.33)/g2^2 + (3*g2^14*t^4.4)/g1^10 + 2*g1^2*g2^2*t^4.45 + (g1^14*t^4.51)/g2^10 + (4*g2^11*t^5.11)/g1 + (2*g1^11*t^5.16)/g2 + (3*t^5.47)/(g1^17*g2^5) + t^5.53/(g1^5*g2^17) + (2*g2^20*t^5.76)/g1^4 + 5*g1^8*g2^8*t^5.82 + (g1^20*t^5.87)/g2^4 + (g2^12*t^5.95)/g1^12 - 3*t^6. - (g1^12*t^6.05)/g2^12 + (2*t^6.18)/(g1^8*g2^8) + (2*g2^29*t^6.42)/g1^7 + 3*g1^5*g2^17*t^6.47 + 3*g1^17*g2^5*t^6.53 + (3*t^6.55)/(g1^24*g2^24) + (g1^29*t^6.58)/g2^7 + (4*g2^21*t^6.6)/g1^15 + (3*g2^9*t^6.65)/g1^3 + (g1^21*t^6.76)/g2^15 + t^7.02/(g1^19*g2^7) - t^7.07/(g1^7*g2^19) + 2*g1^2*g2^26*t^7.13 + 2*g1^14*g2^14*t^7.18 + 2*g1^26*g2^2*t^7.24 + (6*g2^18*t^7.31)/g1^6 + 2*g1^6*g2^6*t^7.36 + (g1^18*t^7.42)/g2^6 + (g2^10*t^7.49)/g1^14 - (2*t^7.55)/(g1^2*g2^2) + (4*g2^2*t^7.67)/g1^22 + t^7.73/(g1^10*g2^10) + (g1^2*t^7.78)/g2^22 + (g2^35*t^7.78)/g1 + g1^11*g2^23*t^7.84 + g1^23*g2^11*t^7.89 + (g1^35*t^7.94)/g2 + (4*g2^27*t^7.96)/g1^9 + 7*g1^3*g2^15*t^8.02 + 3*g1^15*g2^3*t^8.07 + (g1^27*t^8.13)/g2^9 + (g2^19*t^8.14)/g1^17 - (7*g2^7*t^8.2)/g1^5 - (5*g1^7*t^8.25)/g2^5 - (g1^19*t^8.31)/g2^17 + (2*t^8.38)/(g1^13*g2) + (g2^44*t^8.43)/g1^4 + g1^8*g2^32*t^8.49 + g1^20*g2^20*t^8.54 + g1^32*g2^8*t^8.6 + (3*g2^36*t^8.62)/g1^12 + (g1^44*t^8.65)/g2^4 + 5*g2^24*t^8.67 + 8*g1^12*g2^12*t^8.73 + (4*t^8.75)/(g1^29*g2^17) + 3*g1^24*t^8.78 + t^8.8/(g1^17*g2^29) + (5*g2^28*t^8.8)/g1^20 + (g1^36*t^8.84)/g2^12 + (2*g2^16*t^8.85)/g1^8 - 8*g1^4*g2^4*t^8.91 - (2*g1^16*t^8.96)/g2^8 - t^4.55/(g1^2*g2^2*y) - (g2^5*t^6.75)/(g1^7*y) + (g1^10*g2^10*t^7.27)/y + (g2^14*t^7.4)/(g1^10*y) + (g1^2*g2^2*t^7.45)/y + t^7.64/(g1^6*g2^6*y) - t^7.82/(g1^14*g2^14*y) + (4*g2^11*t^8.11)/(g1*y) + (2*g1^11*t^8.16)/(g2*y) + (g1^3*t^8.35)/(g2^9*y) + (4*t^8.47)/(g1^17*g2^5*y) + (2*t^8.53)/(g1^5*g2^17*y) + (2*g2^20*t^8.76)/(g1^4*y) + (4*g1^8*g2^8*t^8.82)/y + (g1^20*t^8.87)/(g2^4*y) + (g2^12*t^8.95)/(g1^12*y) - (t^4.55*y)/(g1^2*g2^2) - (g2^5*t^6.75*y)/g1^7 + g1^10*g2^10*t^7.27*y + (g2^14*t^7.4*y)/g1^10 + g1^2*g2^2*t^7.45*y + (t^7.64*y)/(g1^6*g2^6) - (t^7.82*y)/(g1^14*g2^14) + (4*g2^11*t^8.11*y)/g1 + (2*g1^11*t^8.16*y)/g2 + (g1^3*t^8.35*y)/g2^9 + (4*t^8.47*y)/(g1^17*g2^5) + (2*t^8.53*y)/(g1^5*g2^17) + (2*g2^20*t^8.76*y)/g1^4 + 4*g1^8*g2^8*t^8.82*y + (g1^20*t^8.87*y)/g2^4 + (g2^12*t^8.95*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46477 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | 0.6104 | 0.7857 | 0.777 | [X:[], M:[0.9695, 0.7424, 0.9695, 1.0916], q:[0.7424, 0.2881], qb:[0.4542, 0.4542], phi:[0.5153]] | 3*t^2.23 + 2*t^2.91 + 2*t^3.27 + 2*t^3.59 + t^3.77 + 3*t^4.27 + 6*t^4.45 + 6*t^5.14 + 4*t^5.5 + 8*t^5.82 - 3*t^6. - t^4.55/y - t^4.55*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45969 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6216 | 0.8089 | 0.7684 | [X:[], M:[0.9496, 0.7292, 0.9496], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] | 2*t^2.19 + t^2.24 + t^2.55 + 2*t^2.85 + t^3.45 + t^3.46 + t^3.51 + t^3.76 + t^4.07 + t^4.12 + t^4.17 + 3*t^4.38 + 2*t^4.42 + t^4.47 + 2*t^4.73 + t^4.78 + 4*t^5.04 + 3*t^5.09 + 2*t^5.4 + t^5.64 + 2*t^5.65 + 5*t^5.7 + t^5.75 + t^5.95 - 2*t^6. - t^4.58/y - t^4.58*y | detail |