Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46242 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6409 0.8444 0.759 [M:[0.9489, 0.7372, 0.9489, 0.7372], q:[0.7372, 0.3139], qb:[0.4233, 0.4233], phi:[0.5256]] [M:[[4, 4], [-5, 7], [4, 4], [7, -5]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -5 4*t^2.212 + t^2.54 + 2*t^2.847 + t^3.46 + 2*t^3.481 + 3*t^4.116 + 10*t^4.423 + 4*t^4.751 + 8*t^5.058 + t^5.079 + 2*t^5.386 + 2*t^5.672 + 10*t^5.693 - 5*t^6. + 2*t^6.021 + 12*t^6.328 + 16*t^6.635 + 3*t^6.656 + t^6.921 - 2*t^6.942 + 16*t^6.963 - 2*t^7.249 + 15*t^7.27 + 4*t^7.291 - 5*t^7.577 + 12*t^7.598 + t^7.619 + 2*t^7.884 + 22*t^7.905 + 2*t^7.926 - 22*t^8.212 + 15*t^8.233 - 4*t^8.519 + 27*t^8.54 + 2*t^8.561 + 8*t^8.847 + 12*t^8.868 - t^4.577/y - (2*t^6.788)/y + (5*t^7.423)/y + t^7.73/y + (4*t^7.751)/y + (8*t^8.058)/y + (2*t^8.365)/y + (2*t^8.386)/y + (4*t^8.672)/y + (9*t^8.693)/y - t^4.577*y - 2*t^6.788*y + 5*t^7.423*y + t^7.73*y + 4*t^7.751*y + 8*t^8.058*y + 2*t^8.365*y + 2*t^8.386*y + 4*t^8.672*y + 9*t^8.693*y (2*g1^7*t^2.212)/g2^5 + (2*g2^7*t^2.212)/g1^5 + g1^12*g2^12*t^2.54 + 2*g1^4*g2^4*t^2.847 + t^3.46/(g1^12*g2^12) + g1^13*g2*t^3.481 + g1*g2^13*t^3.481 + (g1^22*t^4.116)/g2^2 + g1^10*g2^10*t^4.116 + (g2^22*t^4.116)/g1^2 + (3*g1^14*t^4.423)/g2^10 + 4*g1^2*g2^2*t^4.423 + (3*g2^14*t^4.423)/g1^10 + 2*g1^19*g2^7*t^4.751 + 2*g1^7*g2^19*t^4.751 + (4*g1^11*t^5.058)/g2 + (4*g2^11*t^5.058)/g1 + g1^24*g2^24*t^5.079 + 2*g1^16*g2^16*t^5.386 + t^5.672/(g1^5*g2^17) + t^5.672/(g1^17*g2^5) + (2*g1^20*t^5.693)/g2^4 + 6*g1^8*g2^8*t^5.693 + (2*g2^20*t^5.693)/g1^4 - 3*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + g1^25*g2^13*t^6.021 + g1^13*g2^25*t^6.021 + (2*g1^29*t^6.328)/g2^7 + 4*g1^17*g2^5*t^6.328 + 4*g1^5*g2^17*t^6.328 + (2*g2^29*t^6.328)/g1^7 + (4*g1^21*t^6.635)/g2^15 + (4*g1^9*t^6.635)/g2^3 + (4*g2^9*t^6.635)/g1^3 + (4*g2^21*t^6.635)/g1^15 + g1^34*g2^10*t^6.656 + g1^22*g2^22*t^6.656 + g1^10*g2^34*t^6.656 + t^6.921/(g1^24*g2^24) - (g1*t^6.942)/g2^11 - (g2*t^6.942)/g1^11 + 5*g1^26*g2^2*t^6.963 + 6*g1^14*g2^14*t^6.963 + 5*g1^2*g2^26*t^6.963 - t^7.249/(g1^7*g2^19) - t^7.249/(g1^19*g2^7) + (5*g1^18*t^7.27)/g2^6 + 5*g1^6*g2^6*t^7.27 + (5*g2^18*t^7.27)/g1^6 + 2*g1^31*g2^19*t^7.291 + 2*g1^19*g2^31*t^7.291 - (g1^10*t^7.577)/g2^14 - (3*t^7.577)/(g1^2*g2^2) - (g2^10*t^7.577)/g1^14 + (g1^35*t^7.598)/g2 + 5*g1^23*g2^11*t^7.598 + 5*g1^11*g2^23*t^7.598 + (g2^35*t^7.598)/g1 + g1^36*g2^36*t^7.619 + (g1^2*t^7.884)/g2^22 + (g2^2*t^7.884)/g1^22 + (3*g1^27*t^7.905)/g2^9 + 8*g1^15*g2^3*t^7.905 + 8*g1^3*g2^15*t^7.905 + (3*g2^27*t^7.905)/g1^9 + 2*g1^28*g2^28*t^7.926 - (2*g1^19*t^8.212)/g2^17 - (9*g1^7*t^8.212)/g2^5 - (9*g2^7*t^8.212)/g1^5 - (2*g2^19*t^8.212)/g1^17 + (g1^44*t^8.233)/g2^4 + 3*g1^32*g2^8*t^8.233 + 7*g1^20*g2^20*t^8.233 + 3*g1^8*g2^32*t^8.233 + (g2^44*t^8.233)/g1^4 - (2*t^8.519)/(g1*g2^13) - (2*t^8.519)/(g1^13*g2) + 6*g1^24*t^8.54 + (3*g1^36*t^8.54)/g2^12 + 9*g1^12*g2^12*t^8.54 + 6*g2^24*t^8.54 + (3*g2^36*t^8.54)/g1^12 + g1^37*g2^25*t^8.561 + g1^25*g2^37*t^8.561 + (5*g1^28*t^8.847)/g2^20 + (2*g1^16*t^8.847)/g2^8 - 6*g1^4*g2^4*t^8.847 + (2*g2^16*t^8.847)/g1^8 + (5*g2^28*t^8.847)/g1^20 + 2*g1^41*g2^5*t^8.868 + 4*g1^29*g2^17*t^8.868 + 4*g1^17*g2^29*t^8.868 + 2*g1^5*g2^41*t^8.868 - t^4.577/(g1^2*g2^2*y) - (g1^5*t^6.788)/(g2^7*y) - (g2^5*t^6.788)/(g1^7*y) + (g1^14*t^7.423)/(g2^10*y) + (3*g1^2*g2^2*t^7.423)/y + (g2^14*t^7.423)/(g1^10*y) + t^7.73/(g1^6*g2^6*y) + (2*g1^19*g2^7*t^7.751)/y + (2*g1^7*g2^19*t^7.751)/y + (4*g1^11*t^8.058)/(g2*y) + (4*g2^11*t^8.058)/(g1*y) + (g1^3*t^8.365)/(g2^9*y) + (g2^3*t^8.365)/(g1^9*y) + (2*g1^16*g2^16*t^8.386)/y + (2*t^8.672)/(g1^5*g2^17*y) + (2*t^8.672)/(g1^17*g2^5*y) + (2*g1^20*t^8.693)/(g2^4*y) + (5*g1^8*g2^8*t^8.693)/y + (2*g2^20*t^8.693)/(g1^4*y) - (t^4.577*y)/(g1^2*g2^2) - (g1^5*t^6.788*y)/g2^7 - (g2^5*t^6.788*y)/g1^7 + (g1^14*t^7.423*y)/g2^10 + 3*g1^2*g2^2*t^7.423*y + (g2^14*t^7.423*y)/g1^10 + (t^7.73*y)/(g1^6*g2^6) + 2*g1^19*g2^7*t^7.751*y + 2*g1^7*g2^19*t^7.751*y + (4*g1^11*t^8.058*y)/g2 + (4*g2^11*t^8.058*y)/g1 + (g1^3*t^8.365*y)/g2^9 + (g2^3*t^8.365*y)/g1^9 + 2*g1^16*g2^16*t^8.386*y + (2*t^8.672*y)/(g1^5*g2^17) + (2*t^8.672*y)/(g1^17*g2^5) + (2*g1^20*t^8.693*y)/g2^4 + 5*g1^8*g2^8*t^8.693*y + (2*g2^20*t^8.693*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45969 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ 0.6216 0.8089 0.7684 [M:[0.9496, 0.7292, 0.9496], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] 2*t^2.188 + t^2.237 + t^2.547 + 2*t^2.849 + t^3.453 + t^3.461 + t^3.51 + t^3.763 + t^4.073 + t^4.122 + t^4.171 + 3*t^4.375 + 2*t^4.424 + t^4.474 + 2*t^4.734 + t^4.783 + 4*t^5.036 + 2*t^5.086 + t^5.093 + 2*t^5.395 + t^5.641 + 2*t^5.649 + 5*t^5.698 + t^5.747 + t^5.951 - 2*t^6. - t^4.576/y - t^4.576*y detail