Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46242 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.6409 | 0.8444 | 0.759 | [X:[], M:[0.9489, 0.7372, 0.9489, 0.7372], q:[0.7372, 0.3139], qb:[0.4233, 0.4233], phi:[0.5256]] | [X:[], M:[[4, 4], [-5, 7], [4, 4], [7, -5]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -5 | 4*t^2.21 + t^2.54 + 2*t^2.85 + t^3.46 + 2*t^3.48 + 3*t^4.12 + 10*t^4.42 + 4*t^4.75 + 8*t^5.06 + t^5.08 + 2*t^5.39 + 2*t^5.67 + 10*t^5.69 - 5*t^6. + 2*t^6.02 + 12*t^6.33 + 16*t^6.63 + 3*t^6.66 + t^6.92 - 2*t^6.94 + 16*t^6.96 - 2*t^7.25 + 15*t^7.27 + 4*t^7.29 - 5*t^7.58 + 12*t^7.6 + t^7.62 + 2*t^7.88 + 22*t^7.9 + 2*t^7.93 - 22*t^8.21 + 15*t^8.23 - 4*t^8.52 + 27*t^8.54 + 2*t^8.56 + 8*t^8.85 + 12*t^8.87 - t^4.58/y - (2*t^6.79)/y + (5*t^7.42)/y + t^7.73/y + (4*t^7.75)/y + (8*t^8.06)/y + (2*t^8.37)/y + (2*t^8.39)/y + (4*t^8.67)/y + (9*t^8.69)/y - t^4.58*y - 2*t^6.79*y + 5*t^7.42*y + t^7.73*y + 4*t^7.75*y + 8*t^8.06*y + 2*t^8.37*y + 2*t^8.39*y + 4*t^8.67*y + 9*t^8.69*y | (2*g1^7*t^2.21)/g2^5 + (2*g2^7*t^2.21)/g1^5 + g1^12*g2^12*t^2.54 + 2*g1^4*g2^4*t^2.85 + t^3.46/(g1^12*g2^12) + g1^13*g2*t^3.48 + g1*g2^13*t^3.48 + (g1^22*t^4.12)/g2^2 + g1^10*g2^10*t^4.12 + (g2^22*t^4.12)/g1^2 + (3*g1^14*t^4.42)/g2^10 + 4*g1^2*g2^2*t^4.42 + (3*g2^14*t^4.42)/g1^10 + 2*g1^19*g2^7*t^4.75 + 2*g1^7*g2^19*t^4.75 + (4*g1^11*t^5.06)/g2 + (4*g2^11*t^5.06)/g1 + g1^24*g2^24*t^5.08 + 2*g1^16*g2^16*t^5.39 + t^5.67/(g1^5*g2^17) + t^5.67/(g1^17*g2^5) + (2*g1^20*t^5.69)/g2^4 + 6*g1^8*g2^8*t^5.69 + (2*g2^20*t^5.69)/g1^4 - 3*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + g1^25*g2^13*t^6.02 + g1^13*g2^25*t^6.02 + (2*g1^29*t^6.33)/g2^7 + 4*g1^17*g2^5*t^6.33 + 4*g1^5*g2^17*t^6.33 + (2*g2^29*t^6.33)/g1^7 + (4*g1^21*t^6.63)/g2^15 + (4*g1^9*t^6.63)/g2^3 + (4*g2^9*t^6.63)/g1^3 + (4*g2^21*t^6.63)/g1^15 + g1^34*g2^10*t^6.66 + g1^22*g2^22*t^6.66 + g1^10*g2^34*t^6.66 + t^6.92/(g1^24*g2^24) - (g1*t^6.94)/g2^11 - (g2*t^6.94)/g1^11 + 5*g1^26*g2^2*t^6.96 + 6*g1^14*g2^14*t^6.96 + 5*g1^2*g2^26*t^6.96 - t^7.25/(g1^7*g2^19) - t^7.25/(g1^19*g2^7) + (5*g1^18*t^7.27)/g2^6 + 5*g1^6*g2^6*t^7.27 + (5*g2^18*t^7.27)/g1^6 + 2*g1^31*g2^19*t^7.29 + 2*g1^19*g2^31*t^7.29 - (g1^10*t^7.58)/g2^14 - (3*t^7.58)/(g1^2*g2^2) - (g2^10*t^7.58)/g1^14 + (g1^35*t^7.6)/g2 + 5*g1^23*g2^11*t^7.6 + 5*g1^11*g2^23*t^7.6 + (g2^35*t^7.6)/g1 + g1^36*g2^36*t^7.62 + (g1^2*t^7.88)/g2^22 + (g2^2*t^7.88)/g1^22 + (3*g1^27*t^7.9)/g2^9 + 8*g1^15*g2^3*t^7.9 + 8*g1^3*g2^15*t^7.9 + (3*g2^27*t^7.9)/g1^9 + 2*g1^28*g2^28*t^7.93 - (2*g1^19*t^8.21)/g2^17 - (9*g1^7*t^8.21)/g2^5 - (9*g2^7*t^8.21)/g1^5 - (2*g2^19*t^8.21)/g1^17 + (g1^44*t^8.23)/g2^4 + 3*g1^32*g2^8*t^8.23 + 7*g1^20*g2^20*t^8.23 + 3*g1^8*g2^32*t^8.23 + (g2^44*t^8.23)/g1^4 - (2*t^8.52)/(g1*g2^13) - (2*t^8.52)/(g1^13*g2) + 6*g1^24*t^8.54 + (3*g1^36*t^8.54)/g2^12 + 9*g1^12*g2^12*t^8.54 + 6*g2^24*t^8.54 + (3*g2^36*t^8.54)/g1^12 + g1^37*g2^25*t^8.56 + g1^25*g2^37*t^8.56 + (5*g1^28*t^8.85)/g2^20 + (2*g1^16*t^8.85)/g2^8 - 6*g1^4*g2^4*t^8.85 + (2*g2^16*t^8.85)/g1^8 + (5*g2^28*t^8.85)/g1^20 + 2*g1^41*g2^5*t^8.87 + 4*g1^29*g2^17*t^8.87 + 4*g1^17*g2^29*t^8.87 + 2*g1^5*g2^41*t^8.87 - t^4.58/(g1^2*g2^2*y) - (g1^5*t^6.79)/(g2^7*y) - (g2^5*t^6.79)/(g1^7*y) + (g1^14*t^7.42)/(g2^10*y) + (3*g1^2*g2^2*t^7.42)/y + (g2^14*t^7.42)/(g1^10*y) + t^7.73/(g1^6*g2^6*y) + (2*g1^19*g2^7*t^7.75)/y + (2*g1^7*g2^19*t^7.75)/y + (4*g1^11*t^8.06)/(g2*y) + (4*g2^11*t^8.06)/(g1*y) + (g1^3*t^8.37)/(g2^9*y) + (g2^3*t^8.37)/(g1^9*y) + (2*g1^16*g2^16*t^8.39)/y + (2*t^8.67)/(g1^5*g2^17*y) + (2*t^8.67)/(g1^17*g2^5*y) + (2*g1^20*t^8.69)/(g2^4*y) + (5*g1^8*g2^8*t^8.69)/y + (2*g2^20*t^8.69)/(g1^4*y) - (t^4.58*y)/(g1^2*g2^2) - (g1^5*t^6.79*y)/g2^7 - (g2^5*t^6.79*y)/g1^7 + (g1^14*t^7.42*y)/g2^10 + 3*g1^2*g2^2*t^7.42*y + (g2^14*t^7.42*y)/g1^10 + (t^7.73*y)/(g1^6*g2^6) + 2*g1^19*g2^7*t^7.75*y + 2*g1^7*g2^19*t^7.75*y + (4*g1^11*t^8.06*y)/g2 + (4*g2^11*t^8.06*y)/g1 + (g1^3*t^8.37*y)/g2^9 + (g2^3*t^8.37*y)/g1^9 + 2*g1^16*g2^16*t^8.39*y + (2*t^8.67*y)/(g1^5*g2^17) + (2*t^8.67*y)/(g1^17*g2^5) + (2*g1^20*t^8.69*y)/g2^4 + 5*g1^8*g2^8*t^8.69*y + (2*g2^20*t^8.69*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45969 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6216 | 0.8089 | 0.7684 | [X:[], M:[0.9496, 0.7292, 0.9496], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] | 2*t^2.19 + t^2.24 + t^2.55 + 2*t^2.85 + t^3.45 + t^3.46 + t^3.51 + t^3.76 + t^4.07 + t^4.12 + t^4.17 + 3*t^4.38 + 2*t^4.42 + t^4.47 + 2*t^4.73 + t^4.78 + 4*t^5.04 + 3*t^5.09 + 2*t^5.4 + t^5.64 + 2*t^5.65 + 5*t^5.7 + t^5.75 + t^5.95 - 2*t^6. - t^4.58/y - t^4.58*y | detail |