Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46258 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | 0.6214 | 0.8083 | 0.7688 | [X:[], M:[0.9495, 0.7374, 0.9495], q:[0.7374, 0.3131], qb:[0.4243, 0.4243], phi:[0.5252]] | [X:[], M:[[4], [1], [4]], q:[[1], [-5]], qb:[[6], [6]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -2 | 3*t^2.21 + t^2.55 + 2*t^2.85 + t^3.45 + 2*t^3.49 + t^3.79 + 3*t^4.12 + 6*t^4.42 + 3*t^4.76 + 6*t^5.06 + t^5.09 + 2*t^5.39 + t^5.67 + 8*t^5.7 - 2*t^6. + 2*t^6.03 + 10*t^6.33 + 8*t^6.64 + 3*t^6.67 + t^6.91 - 2*t^6.94 + 12*t^6.97 - t^7.24 + 9*t^7.27 + 3*t^7.3 - 4*t^7.58 + 10*t^7.61 + t^7.64 + 15*t^7.91 + 2*t^7.94 - 11*t^8.21 + 13*t^8.24 - 4*t^8.51 + 18*t^8.55 + 2*t^8.58 - 2*t^8.85 + 10*t^8.88 - t^4.58/y - t^6.79/y + (2*t^7.42)/y + t^7.73/y + (3*t^7.76)/y + (6*t^8.06)/y + t^8.36/y + (2*t^8.39)/y + (3*t^8.67)/y + (7*t^8.7)/y - t^4.58*y - t^6.79*y + 2*t^7.42*y + t^7.73*y + 3*t^7.76*y + 6*t^8.06*y + t^8.36*y + 2*t^8.39*y + 3*t^8.67*y + 7*t^8.7*y | 3*g1*t^2.21 + g1^12*t^2.55 + 2*g1^4*t^2.85 + t^3.45/g1^12 + 2*g1^7*t^3.49 + t^3.79/g1 + 3*g1^10*t^4.12 + 6*g1^2*t^4.42 + 3*g1^13*t^4.76 + 6*g1^5*t^5.06 + g1^24*t^5.09 + 2*g1^16*t^5.39 + t^5.67/g1^11 + 8*g1^8*t^5.7 - 2*t^6. + 2*g1^19*t^6.03 + 10*g1^11*t^6.33 + 8*g1^3*t^6.64 + 3*g1^22*t^6.67 + t^6.91/g1^24 - (2*t^6.94)/g1^5 + 12*g1^14*t^6.97 - t^7.24/g1^13 + 9*g1^6*t^7.27 + 3*g1^25*t^7.3 - (4*t^7.58)/g1^2 + 10*g1^17*t^7.61 + g1^36*t^7.64 + 15*g1^9*t^7.91 + 2*g1^28*t^7.94 - 11*g1*t^8.21 + 13*g1^20*t^8.24 - (4*t^8.51)/g1^7 + 18*g1^12*t^8.55 + 2*g1^31*t^8.58 - 2*g1^4*t^8.85 + 10*g1^23*t^8.88 - t^4.58/(g1^2*y) - t^6.79/(g1*y) + (2*g1^2*t^7.42)/y + t^7.73/(g1^6*y) + (3*g1^13*t^7.76)/y + (6*g1^5*t^8.06)/y + t^8.36/(g1^3*y) + (2*g1^16*t^8.39)/y + (3*t^8.67)/(g1^11*y) + (7*g1^8*t^8.7)/y - (t^4.58*y)/g1^2 - (t^6.79*y)/g1 + 2*g1^2*t^7.42*y + (t^7.73*y)/g1^6 + 3*g1^13*t^7.76*y + 6*g1^5*t^8.06*y + (t^8.36*y)/g1^3 + 2*g1^16*t^8.39*y + (3*t^8.67*y)/g1^11 + 7*g1^8*t^8.7*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46740 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0.5207 | 0.6697 | 0.7775 | [X:[], M:[1.0769, 0.7692, 1.0769], q:[0.7692, 0.1538], qb:[0.6154, 0.6154], phi:[0.4615]] | 4*t^2.31 + 2*t^3.23 + 2*t^3.69 + 2*t^4.15 + 8*t^4.62 + 3*t^5.08 + 6*t^5.54 - t^4.38/y - t^4.38*y | detail | {a: 18303/35152, c: 11771/17576, M1: 14/13, M2: 10/13, M3: 14/13, q1: 10/13, q2: 2/13, qb1: 8/13, qb2: 8/13, phi1: 6/13} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45969 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6216 | 0.8089 | 0.7684 | [X:[], M:[0.9496, 0.7292, 0.9496], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] | 2*t^2.19 + t^2.24 + t^2.55 + 2*t^2.85 + t^3.45 + t^3.46 + t^3.51 + t^3.76 + t^4.07 + t^4.12 + t^4.17 + 3*t^4.38 + 2*t^4.42 + t^4.47 + 2*t^4.73 + t^4.78 + 4*t^5.04 + 3*t^5.09 + 2*t^5.4 + t^5.64 + 2*t^5.65 + 5*t^5.7 + t^5.75 + t^5.95 - 2*t^6. - t^4.58/y - t^4.58*y | detail |