Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
778 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6897 | 0.8762 | 0.7872 | [X:[], M:[0.6979, 0.713, 0.6829, 0.6829, 1.287, 0.6979], q:[0.818, 0.8331], qb:[0.4841, 0.469], phi:[0.349]] | [X:[], M:[[-2, -2], [1, -5], [-5, 1], [-5, 1], [-1, 5], [-2, -2]], q:[[-1, 2], [2, -1]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_4$, $ M_1$, $ M_6$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_1M_3$, $ M_1M_4$, $ M_3M_6$, $ M_4M_6$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_1^2$, $ M_1M_6$, $ M_6^2$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3M_5$, $ M_4M_5$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_1M_5$, $ M_5M_6$, $ M_5\phi_1^2$, $ M_6q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$ | $M_1q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$ | -2 | 2*t^2.05 + 3*t^2.09 + t^2.86 + 2*t^3.86 + t^3.91 + 3*t^4.1 + 6*t^4.14 + 6*t^4.19 + 2*t^4.91 + 4*t^4.95 + t^5.72 + 4*t^5.91 + 6*t^5.95 - 2*t^6. - 2*t^6.05 + 4*t^6.15 + 9*t^6.19 + 12*t^6.24 + 10*t^6.28 + 2*t^6.72 + t^6.77 + 3*t^6.96 + 6*t^7. + 5*t^7.05 - 2*t^7.09 + 3*t^7.72 + 2*t^7.77 - 2*t^7.86 + 6*t^7.96 + 11*t^8. + 2*t^8.05 - 12*t^8.09 - 6*t^8.14 + 5*t^8.19 + 12*t^8.24 + 18*t^8.28 + 20*t^8.33 + 15*t^8.38 + t^8.58 + 4*t^8.77 + 6*t^8.81 - 5*t^8.86 - 4*t^8.9 - t^4.05/y - (2*t^6.1)/y - (3*t^6.14)/y + t^7.1/y + (6*t^7.14)/y + (3*t^7.19)/y + (2*t^7.91)/y + (6*t^7.95)/y + (2*t^8.)/y - (3*t^8.14)/y - (6*t^8.19)/y - (6*t^8.23)/y + (4*t^8.91)/y + (8*t^8.95)/y - t^4.05*y - 2*t^6.1*y - 3*t^6.14*y + t^7.1*y + 6*t^7.14*y + 3*t^7.19*y + 2*t^7.91*y + 6*t^7.95*y + 2*t^8.*y - 3*t^8.14*y - 6*t^8.19*y - 6*t^8.23*y + 4*t^8.91*y + 8*t^8.95*y | (2*g2*t^2.05)/g1^5 + (3*t^2.09)/(g1^2*g2^2) + g1^3*g2^3*t^2.86 + (2*g2^5*t^3.86)/g1 + g1^2*g2^2*t^3.91 + (3*g2^2*t^4.1)/g1^10 + (6*t^4.14)/(g1^7*g2) + (6*t^4.19)/(g1^4*g2^4) + (2*g2^4*t^4.91)/g1^2 + 4*g1*g2*t^4.95 + g1^6*g2^6*t^5.72 + (4*g2^6*t^5.91)/g1^6 + (6*g2^3*t^5.95)/g1^3 - 2*t^6. - (2*g1^3*t^6.05)/g2^3 + (4*g2^3*t^6.15)/g1^15 + (9*t^6.19)/g1^12 + (12*t^6.24)/(g1^9*g2^3) + (10*t^6.28)/(g1^6*g2^6) + 2*g1^2*g2^8*t^6.72 + g1^5*g2^5*t^6.77 + (3*g2^5*t^6.96)/g1^7 + (6*g2^2*t^7.)/g1^4 + (5*t^7.05)/(g1*g2) - (2*g1^2*t^7.09)/g2^4 + (3*g2^10*t^7.72)/g1^2 + 2*g1*g2^7*t^7.77 - 2*g1^7*g2*t^7.86 + (6*g2^7*t^7.96)/g1^11 + (11*g2^4*t^8.)/g1^8 + (2*g2*t^8.05)/g1^5 - (12*t^8.09)/(g1^2*g2^2) - (6*g1*t^8.14)/g2^5 + (5*g2^4*t^8.19)/g1^20 + (12*g2*t^8.24)/g1^17 + (18*t^8.28)/(g1^14*g2^2) + (20*t^8.33)/(g1^11*g2^5) + (15*t^8.38)/(g1^8*g2^8) + g1^9*g2^9*t^8.58 + (4*g2^9*t^8.77)/g1^3 + 6*g2^6*t^8.81 - 5*g1^3*g2^3*t^8.86 - 4*g1^6*t^8.9 - t^4.05/(g1*g2*y) - (2*t^6.1)/(g1^6*y) - (3*t^6.14)/(g1^3*g2^3*y) + (g2^2*t^7.1)/(g1^10*y) + (6*t^7.14)/(g1^7*g2*y) + (3*t^7.19)/(g1^4*g2^4*y) + (2*g2^4*t^7.91)/(g1^2*y) + (6*g1*g2*t^7.95)/y + (2*g1^4*t^8.)/(g2^2*y) - (3*g2*t^8.14)/(g1^11*y) - (6*t^8.19)/(g1^8*g2^2*y) - (6*t^8.23)/(g1^5*g2^5*y) + (4*g2^6*t^8.91)/(g1^6*y) + (8*g2^3*t^8.95)/(g1^3*y) - (t^4.05*y)/(g1*g2) - (2*t^6.1*y)/g1^6 - (3*t^6.14*y)/(g1^3*g2^3) + (g2^2*t^7.1*y)/g1^10 + (6*t^7.14*y)/(g1^7*g2) + (3*t^7.19*y)/(g1^4*g2^4) + (2*g2^4*t^7.91*y)/g1^2 + 6*g1*g2*t^7.95*y + (2*g1^4*t^8.*y)/g2^2 - (3*g2*t^8.14*y)/g1^11 - (6*t^8.19*y)/(g1^8*g2^2) - (6*t^8.23*y)/(g1^5*g2^5) + (4*g2^6*t^8.91*y)/g1^6 + (8*g2^3*t^8.95*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
486 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6692 | 0.8369 | 0.7996 | [X:[], M:[0.7022, 0.7192, 0.6851, 0.6851, 1.2808], q:[0.8159, 0.833], qb:[0.4819, 0.4649], phi:[0.3511]] | 2*t^2.06 + 2*t^2.11 + t^2.84 + 2*t^3.84 + 2*t^3.89 + 3*t^4.11 + 4*t^4.16 + 3*t^4.21 + 2*t^4.9 + 3*t^4.95 + t^5.68 + 4*t^5.9 + 6*t^5.95 - t^6. - t^4.05/y - t^4.05*y | detail |