Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
290 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ 0.6895 0.8743 0.7886 [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.8263, 0.8263], qb:[0.4789, 0.4789], phi:[0.3474]] [X:[], M:[[1, -5], [0, -4], [0, -4], [-1, -3]], q:[[-1, 2], [1, 0]], qb:[[0, 3], [0, 3]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_1M_3$, $ M_1\phi_1^2$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ M_1M_4$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_2M_4$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_4^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ $M_2q_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$ 6 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. + 35*t^6.25 + 3*t^6.79 + 12*t^7.04 + 3*t^7.83 + t^8.08 + 70*t^8.34 + t^8.62 + t^8.87 - t^4.04/y - (5*t^6.13)/y + (10*t^7.17)/y + (10*t^7.96)/y - (15*t^8.21)/y - t^4.04*y - 5*t^6.13*y + 10*t^7.17*y + 10*t^7.96*y - 15*t^8.21*y (g1*t^2.08)/g2^5 + (3*t^2.08)/g2^4 + t^2.08/(g1*g2^3) + g2^6*t^2.87 + g1*g2^3*t^3.92 + g2^4*t^3.92 + (g2^5*t^3.92)/g1 + (g1^2*t^4.17)/g2^10 + (3*g1*t^4.17)/g2^9 + (7*t^4.17)/g2^8 + (3*t^4.17)/(g1*g2^7) + t^4.17/(g1^2*g2^6) + g1*g2*t^4.96 + 4*g2^2*t^4.96 + (g2^3*t^4.96)/g1 + g2^12*t^5.75 + (g1^2*t^6.)/g2^2 + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + (g2^2*t^6.)/g1^2 + (g1^3*t^6.25)/g2^15 + (3*g1^2*t^6.25)/g2^14 + (7*g1*t^6.25)/g2^13 + (13*t^6.25)/g2^12 + (7*t^6.25)/(g1*g2^11) + (3*t^6.25)/(g1^2*g2^10) + t^6.25/(g1^3*g2^9) + g1*g2^9*t^6.79 + g2^10*t^6.79 + (g2^11*t^6.79)/g1 + t^7.04/g1^2 + (g1^2*t^7.04)/g2^4 + (2*g1*t^7.04)/g2^3 + (6*t^7.04)/g2^2 + (2*t^7.04)/(g1*g2) + g1^2*g2^6*t^7.83 + g2^8*t^7.83 + (g2^10*t^7.83)/g1^2 + (g1^3*t^8.08)/g2^7 + (2*g1^2*t^8.08)/g2^6 - (5*t^8.08)/g2^4 + (2*t^8.08)/(g1^2*g2^2) + t^8.08/(g1^3*g2) + (g1^4*t^8.34)/g2^20 + (3*g1^3*t^8.34)/g2^19 + (7*g1^2*t^8.34)/g2^18 + (13*g1*t^8.34)/g2^17 + (22*t^8.34)/g2^16 + (13*t^8.34)/(g1*g2^15) + (7*t^8.34)/(g1^2*g2^14) + (3*t^8.34)/(g1^3*g2^13) + t^8.34/(g1^4*g2^12) + g2^18*t^8.62 + g1^2*g2^4*t^8.87 + g1*g2^5*t^8.87 - 3*g2^6*t^8.87 + (g2^7*t^8.87)/g1 + (g2^8*t^8.87)/g1^2 - t^4.04/(g2^2*y) - (g1*t^6.13)/(g2^7*y) - (3*t^6.13)/(g2^6*y) - t^6.13/(g1*g2^5*y) + (3*g1*t^7.17)/(g2^9*y) + (4*t^7.17)/(g2^8*y) + (3*t^7.17)/(g1*g2^7*y) + (2*g1*g2*t^7.96)/y + (6*g2^2*t^7.96)/y + (2*g2^3*t^7.96)/(g1*y) - (g1^2*t^8.21)/(g2^12*y) - (3*g1*t^8.21)/(g2^11*y) - (7*t^8.21)/(g2^10*y) - (3*t^8.21)/(g1*g2^9*y) - t^8.21/(g1^2*g2^8*y) - (t^4.04*y)/g2^2 - (g1*t^6.13*y)/g2^7 - (3*t^6.13*y)/g2^6 - (t^6.13*y)/(g1*g2^5) + (3*g1*t^7.17*y)/g2^9 + (4*t^7.17*y)/g2^8 + (3*t^7.17*y)/(g1*g2^7) + 2*g1*g2*t^7.96*y + 6*g2^2*t^7.96*y + (2*g2^3*t^7.96*y)/g1 - (g1^2*t^8.21*y)/g2^12 - (3*g1*t^8.21*y)/g2^11 - (7*t^8.21*y)/g2^10 - (3*t^8.21*y)/(g1*g2^9) - (t^8.21*y)/(g1^2*g2^8)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
464 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_2^2$ 0.7101 0.9145 0.7765 [X:[], M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.827, 0.827], qb:[0.481, 0.481], phi:[0.346]] 6*t^2.08 + t^2.89 + 2*t^3.92 + 21*t^4.15 + 7*t^4.96 + t^5.77 + 3*t^6. - t^4.04/y - t^4.04*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
184 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ 0.669 0.8353 0.8009 [X:[], M:[0.6891, 0.6994, 0.6994], q:[0.8355, 0.8148], qb:[0.4754, 0.4754], phi:[0.3497]] t^2.07 + 3*t^2.1 + t^2.85 + 2*t^3.87 + t^3.9 + t^3.93 + t^4.13 + 3*t^4.17 + 6*t^4.2 + t^4.92 + 4*t^4.95 + t^5.71 + 2*t^5.94 + 5*t^5.97 - t^6. - t^4.05/y - t^4.05*y detail