Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46246 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ 0.7101 0.9145 0.7765 [M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.481, 0.827], qb:[0.827, 0.481], phi:[0.346]] [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [-1, 0, -1], [-2, -2, 0]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ 3 6*t^2.076 + t^2.886 + 2*t^3.924 + 21*t^4.152 + 7*t^4.962 + t^5.772 + 3*t^6. + 56*t^6.228 + 2*t^6.81 + 19*t^7.038 + t^7.848 - 11*t^8.076 + 126*t^8.304 + t^8.658 - 3*t^8.886 - t^4.038/y - (6*t^6.114)/y + (15*t^7.152)/y + (12*t^7.962)/y - (21*t^8.19)/y - t^4.038*y - 6*t^6.114*y + 15*t^7.152*y + 12*t^7.962*y - 21*t^8.19*y (2*t^2.076)/(g1^2*g2^2) + t^2.076/(g1*g3) + t^2.076/(g2*g3) + (g3*t^2.076)/(g1^3*g2^4) + (g3*t^2.076)/(g1^4*g2^3) + g1^3*g2^3*t^2.886 + (g1^5*g2^5*t^3.924)/g3^2 + (g3^2*t^3.924)/(g1*g2) + t^4.152/(g1^3*g2^5) + (5*t^4.152)/(g1^4*g2^4) + t^4.152/(g1^5*g2^3) + t^4.152/(g1^2*g3^2) + t^4.152/(g2^2*g3^2) + t^4.152/(g1*g2*g3^2) + (2*t^4.152)/(g1^2*g2^3*g3) + (2*t^4.152)/(g1^3*g2^2*g3) + (2*g3*t^4.152)/(g1^5*g2^6) + (2*g3*t^4.152)/(g1^6*g2^5) + (g3^2*t^4.152)/(g1^6*g2^8) + (g3^2*t^4.152)/(g1^7*g2^7) + (g3^2*t^4.152)/(g1^8*g2^6) + 3*g1*g2*t^4.962 + (g1^3*g2^2*t^4.962)/g3 + (g1^2*g2^3*t^4.962)/g3 + (g3*t^4.962)/g1 + (g3*t^4.962)/g2 + g1^6*g2^6*t^5.772 - 3*t^6. + (g1^5*g2^4*t^6.)/g3^3 + (g1^4*g2^5*t^6.)/g3^3 + (g1^3*g2^3*t^6.)/g3^2 + (g3^2*t^6.)/(g1^3*g2^3) + (g3^3*t^6.)/(g1^4*g2^5) + (g3^3*t^6.)/(g1^5*g2^4) + (2*t^6.228)/(g1^5*g2^7) + (8*t^6.228)/(g1^6*g2^6) + (2*t^6.228)/(g1^7*g2^5) + t^6.228/(g1^3*g3^3) + t^6.228/(g2^3*g3^3) + t^6.228/(g1*g2^2*g3^3) + t^6.228/(g1^2*g2*g3^3) + (2*t^6.228)/(g1^2*g2^4*g3^2) + (2*t^6.228)/(g1^3*g2^3*g3^2) + (2*t^6.228)/(g1^4*g2^2*g3^2) + t^6.228/(g1^3*g2^6*g3) + (5*t^6.228)/(g1^4*g2^5*g3) + (5*t^6.228)/(g1^5*g2^4*g3) + t^6.228/(g1^6*g2^3*g3) + (g3*t^6.228)/(g1^6*g2^9) + (5*g3*t^6.228)/(g1^7*g2^8) + (5*g3*t^6.228)/(g1^8*g2^7) + (g3*t^6.228)/(g1^9*g2^6) + (2*g3^2*t^6.228)/(g1^8*g2^10) + (2*g3^2*t^6.228)/(g1^9*g2^9) + (2*g3^2*t^6.228)/(g1^10*g2^8) + (g3^3*t^6.228)/(g1^9*g2^12) + (g3^3*t^6.228)/(g1^10*g2^11) + (g3^3*t^6.228)/(g1^11*g2^10) + (g3^3*t^6.228)/(g1^12*g2^9) + (g1^8*g2^8*t^6.81)/g3^2 + g1^2*g2^2*g3^2*t^6.81 + t^7.038/g1^2 + t^7.038/g2^2 + (5*t^7.038)/(g1*g2) + (g1^3*g2*t^7.038)/g3^2 + (g1*g2^3*t^7.038)/g3^2 + (2*g1*t^7.038)/g3 + (2*g2*t^7.038)/g3 + (2*g3*t^7.038)/(g1^2*g2^3) + (2*g3*t^7.038)/(g1^3*g2^2) + (g3^2*t^7.038)/(g1^3*g2^5) + (g3^2*t^7.038)/(g1^5*g2^3) + g1^4*g2^4*t^7.848 + (g1^10*g2^10*t^7.848)/g3^4 - (g1^7*g2^7*t^7.848)/g3^2 - g1*g2*g3^2*t^7.848 + (g3^4*t^7.848)/(g1^2*g2^2) - (7*t^8.076)/(g1^2*g2^2) + (g1^5*g2^3*t^8.076)/g3^4 + (g1^4*g2^4*t^8.076)/g3^4 + (g1^3*g2^5*t^8.076)/g3^4 + (g1^3*g2^2*t^8.076)/g3^3 + (g1^2*g2^3*t^8.076)/g3^3 + (g1*g2*t^8.076)/g3^2 - (4*t^8.076)/(g1*g3) - (4*t^8.076)/(g2*g3) - (4*g3*t^8.076)/(g1^3*g2^4) - (4*g3*t^8.076)/(g1^4*g2^3) + (g3^2*t^8.076)/(g1^5*g2^5) + (g3^3*t^8.076)/(g1^6*g2^7) + (g3^3*t^8.076)/(g1^7*g2^6) + (g3^4*t^8.076)/(g1^7*g2^9) + (g3^4*t^8.076)/(g1^8*g2^8) + (g3^4*t^8.076)/(g1^9*g2^7) + t^8.304/(g1^6*g2^10) + (5*t^8.304)/(g1^7*g2^9) + (14*t^8.304)/(g1^8*g2^8) + (5*t^8.304)/(g1^9*g2^7) + t^8.304/(g1^10*g2^6) + t^8.304/(g1^4*g3^4) + t^8.304/(g2^4*g3^4) + t^8.304/(g1*g2^3*g3^4) + t^8.304/(g1^2*g2^2*g3^4) + t^8.304/(g1^3*g2*g3^4) + (2*t^8.304)/(g1^2*g2^5*g3^3) + (2*t^8.304)/(g1^3*g2^4*g3^3) + (2*t^8.304)/(g1^4*g2^3*g3^3) + (2*t^8.304)/(g1^5*g2^2*g3^3) + t^8.304/(g1^3*g2^7*g3^2) + (5*t^8.304)/(g1^4*g2^6*g3^2) + (5*t^8.304)/(g1^5*g2^5*g3^2) + (5*t^8.304)/(g1^6*g2^4*g3^2) + t^8.304/(g1^7*g2^3*g3^2) + (2*t^8.304)/(g1^5*g2^8*g3) + (8*t^8.304)/(g1^6*g2^7*g3) + (8*t^8.304)/(g1^7*g2^6*g3) + (2*t^8.304)/(g1^8*g2^5*g3) + (2*g3*t^8.304)/(g1^8*g2^11) + (8*g3*t^8.304)/(g1^9*g2^10) + (8*g3*t^8.304)/(g1^10*g2^9) + (2*g3*t^8.304)/(g1^11*g2^8) + (g3^2*t^8.304)/(g1^9*g2^13) + (5*g3^2*t^8.304)/(g1^10*g2^12) + (5*g3^2*t^8.304)/(g1^11*g2^11) + (5*g3^2*t^8.304)/(g1^12*g2^10) + (g3^2*t^8.304)/(g1^13*g2^9) + (2*g3^3*t^8.304)/(g1^11*g2^14) + (2*g3^3*t^8.304)/(g1^12*g2^13) + (2*g3^3*t^8.304)/(g1^13*g2^12) + (2*g3^3*t^8.304)/(g1^14*g2^11) + (g3^4*t^8.304)/(g1^12*g2^16) + (g3^4*t^8.304)/(g1^13*g2^15) + (g3^4*t^8.304)/(g1^14*g2^14) + (g3^4*t^8.304)/(g1^15*g2^13) + (g3^4*t^8.304)/(g1^16*g2^12) + g1^9*g2^9*t^8.658 - 5*g1^3*g2^3*t^8.886 + (g1^8*g2^7*t^8.886)/g3^3 + (g1^7*g2^8*t^8.886)/g3^3 + (g1^6*g2^6*t^8.886)/g3^2 - (g1^5*g2^4*t^8.886)/g3 - (g1^4*g2^5*t^8.886)/g3 - g1^2*g2*g3*t^8.886 - g1*g2^2*g3*t^8.886 + g3^2*t^8.886 + (g3^3*t^8.886)/(g1*g2^2) + (g3^3*t^8.886)/(g1^2*g2) - t^4.038/(g1*g2*y) - (2*t^6.114)/(g1^3*g2^3*y) - t^6.114/(g1*g2^2*g3*y) - t^6.114/(g1^2*g2*g3*y) - (g3*t^6.114)/(g1^4*g2^5*y) - (g3*t^6.114)/(g1^5*g2^4*y) + t^7.152/(g1^3*g2^5*y) + (3*t^7.152)/(g1^4*g2^4*y) + t^7.152/(g1^5*g2^3*y) + t^7.152/(g1*g2*g3^2*y) + (2*t^7.152)/(g1^2*g2^3*g3*y) + (2*t^7.152)/(g1^3*g2^2*g3*y) + (2*g3*t^7.152)/(g1^5*g2^6*y) + (2*g3*t^7.152)/(g1^6*g2^5*y) + (g3^2*t^7.152)/(g1^7*g2^7*y) + (4*g1*g2*t^7.962)/y + (2*g1^3*g2^2*t^7.962)/(g3*y) + (2*g1^2*g2^3*t^7.962)/(g3*y) + (2*g3*t^7.962)/(g1*y) + (2*g3*t^7.962)/(g2*y) - t^8.19/(g1^4*g2^6*y) - (5*t^8.19)/(g1^5*g2^5*y) - t^8.19/(g1^6*g2^4*y) - t^8.19/(g1*g2^3*g3^2*y) - t^8.19/(g1^2*g2^2*g3^2*y) - t^8.19/(g1^3*g2*g3^2*y) - (2*t^8.19)/(g1^3*g2^4*g3*y) - (2*t^8.19)/(g1^4*g2^3*g3*y) - (2*g3*t^8.19)/(g1^6*g2^7*y) - (2*g3*t^8.19)/(g1^7*g2^6*y) - (g3^2*t^8.19)/(g1^7*g2^9*y) - (g3^2*t^8.19)/(g1^8*g2^8*y) - (g3^2*t^8.19)/(g1^9*g2^7*y) - (t^4.038*y)/(g1*g2) - (2*t^6.114*y)/(g1^3*g2^3) - (t^6.114*y)/(g1*g2^2*g3) - (t^6.114*y)/(g1^2*g2*g3) - (g3*t^6.114*y)/(g1^4*g2^5) - (g3*t^6.114*y)/(g1^5*g2^4) + (t^7.152*y)/(g1^3*g2^5) + (3*t^7.152*y)/(g1^4*g2^4) + (t^7.152*y)/(g1^5*g2^3) + (t^7.152*y)/(g1*g2*g3^2) + (2*t^7.152*y)/(g1^2*g2^3*g3) + (2*t^7.152*y)/(g1^3*g2^2*g3) + (2*g3*t^7.152*y)/(g1^5*g2^6) + (2*g3*t^7.152*y)/(g1^6*g2^5) + (g3^2*t^7.152*y)/(g1^7*g2^7) + 4*g1*g2*t^7.962*y + (2*g1^3*g2^2*t^7.962*y)/g3 + (2*g1^2*g2^3*t^7.962*y)/g3 + (2*g3*t^7.962*y)/g1 + (2*g3*t^7.962*y)/g2 - (t^8.19*y)/(g1^4*g2^6) - (5*t^8.19*y)/(g1^5*g2^5) - (t^8.19*y)/(g1^6*g2^4) - (t^8.19*y)/(g1*g2^3*g3^2) - (t^8.19*y)/(g1^2*g2^2*g3^2) - (t^8.19*y)/(g1^3*g2*g3^2) - (2*t^8.19*y)/(g1^3*g2^4*g3) - (2*t^8.19*y)/(g1^4*g2^3*g3) - (2*g3*t^8.19*y)/(g1^6*g2^7) - (2*g3*t^8.19*y)/(g1^7*g2^6) - (g3^2*t^8.19*y)/(g1^7*g2^9) - (g3^2*t^8.19*y)/(g1^8*g2^8) - (g3^2*t^8.19*y)/(g1^9*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46495 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ 0.5861 0.7654 0.7658 [M:[1.0, 1.0, 0.7055, 0.7055, 0.8528], q:[0.2132, 0.7868], qb:[0.7868, 0.5077], phi:[0.4264]] 2*t^2.117 + t^2.163 + 3*t^2.558 + 2*t^3. + 3*t^4.233 + 2*t^4.279 + 2*t^4.325 + 6*t^4.675 + 4*t^4.721 + 9*t^5.117 + 2*t^5.163 + 4*t^5.558 - t^6. - t^4.279/y - t^4.279*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45944 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ 0.6895 0.8743 0.7886 [M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.4789, 0.8263], qb:[0.8263, 0.4789], phi:[0.3474]] 5*t^2.084 + t^2.873 + 3*t^3.916 + 15*t^4.169 + 6*t^4.958 + t^5.747 + 6*t^6. - t^4.042/y - t^4.042*y detail