Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46246 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ 0.7101 0.9145 0.7765 [X:[], M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.481, 0.827], qb:[0.827, 0.481], phi:[0.346]] [X:[], M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [-1, 0, -1], [-2, -2, 0]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ \phi_1^2$, $ M_4$, $ M_3$, $ M_2$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_3q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$ $M_3\phi_1q_1^2$, $ M_4\phi_1q_1^2$, $ M_5\phi_1q_1^2$, $ \phi_1^3q_1^2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ 3 6*t^2.08 + t^2.89 + 2*t^3.92 + 21*t^4.15 + 7*t^4.96 + t^5.77 + 3*t^6. + 56*t^6.23 + 2*t^6.81 + 19*t^7.04 + t^7.85 - 11*t^8.08 + 126*t^8.3 + t^8.66 - 3*t^8.89 - t^4.04/y - (6*t^6.11)/y + (15*t^7.15)/y + (12*t^7.96)/y - (21*t^8.19)/y - t^4.04*y - 6*t^6.11*y + 15*t^7.15*y + 12*t^7.96*y - 21*t^8.19*y (2*t^2.08)/(g1^2*g2^2) + t^2.08/(g1*g3) + t^2.08/(g2*g3) + (g3*t^2.08)/(g1^3*g2^4) + (g3*t^2.08)/(g1^4*g2^3) + g1^3*g2^3*t^2.89 + (g1^5*g2^5*t^3.92)/g3^2 + (g3^2*t^3.92)/(g1*g2) + t^4.15/(g1^3*g2^5) + (5*t^4.15)/(g1^4*g2^4) + t^4.15/(g1^5*g2^3) + t^4.15/(g1^2*g3^2) + t^4.15/(g2^2*g3^2) + t^4.15/(g1*g2*g3^2) + (2*t^4.15)/(g1^2*g2^3*g3) + (2*t^4.15)/(g1^3*g2^2*g3) + (2*g3*t^4.15)/(g1^5*g2^6) + (2*g3*t^4.15)/(g1^6*g2^5) + (g3^2*t^4.15)/(g1^6*g2^8) + (g3^2*t^4.15)/(g1^7*g2^7) + (g3^2*t^4.15)/(g1^8*g2^6) + 3*g1*g2*t^4.96 + (g1^3*g2^2*t^4.96)/g3 + (g1^2*g2^3*t^4.96)/g3 + (g3*t^4.96)/g1 + (g3*t^4.96)/g2 + g1^6*g2^6*t^5.77 - 3*t^6. + (g1^5*g2^4*t^6.)/g3^3 + (g1^4*g2^5*t^6.)/g3^3 + (g1^3*g2^3*t^6.)/g3^2 + (g3^2*t^6.)/(g1^3*g2^3) + (g3^3*t^6.)/(g1^4*g2^5) + (g3^3*t^6.)/(g1^5*g2^4) + (2*t^6.23)/(g1^5*g2^7) + (8*t^6.23)/(g1^6*g2^6) + (2*t^6.23)/(g1^7*g2^5) + t^6.23/(g1^3*g3^3) + t^6.23/(g2^3*g3^3) + t^6.23/(g1*g2^2*g3^3) + t^6.23/(g1^2*g2*g3^3) + (2*t^6.23)/(g1^2*g2^4*g3^2) + (2*t^6.23)/(g1^3*g2^3*g3^2) + (2*t^6.23)/(g1^4*g2^2*g3^2) + t^6.23/(g1^3*g2^6*g3) + (5*t^6.23)/(g1^4*g2^5*g3) + (5*t^6.23)/(g1^5*g2^4*g3) + t^6.23/(g1^6*g2^3*g3) + (g3*t^6.23)/(g1^6*g2^9) + (5*g3*t^6.23)/(g1^7*g2^8) + (5*g3*t^6.23)/(g1^8*g2^7) + (g3*t^6.23)/(g1^9*g2^6) + (2*g3^2*t^6.23)/(g1^8*g2^10) + (2*g3^2*t^6.23)/(g1^9*g2^9) + (2*g3^2*t^6.23)/(g1^10*g2^8) + (g3^3*t^6.23)/(g1^9*g2^12) + (g3^3*t^6.23)/(g1^10*g2^11) + (g3^3*t^6.23)/(g1^11*g2^10) + (g3^3*t^6.23)/(g1^12*g2^9) + (g1^8*g2^8*t^6.81)/g3^2 + g1^2*g2^2*g3^2*t^6.81 + t^7.04/g1^2 + t^7.04/g2^2 + (5*t^7.04)/(g1*g2) + (g1^3*g2*t^7.04)/g3^2 + (g1*g2^3*t^7.04)/g3^2 + (2*g1*t^7.04)/g3 + (2*g2*t^7.04)/g3 + (2*g3*t^7.04)/(g1^2*g2^3) + (2*g3*t^7.04)/(g1^3*g2^2) + (g3^2*t^7.04)/(g1^3*g2^5) + (g3^2*t^7.04)/(g1^5*g2^3) + g1^4*g2^4*t^7.85 + (g1^10*g2^10*t^7.85)/g3^4 - (g1^7*g2^7*t^7.85)/g3^2 - g1*g2*g3^2*t^7.85 + (g3^4*t^7.85)/(g1^2*g2^2) - (7*t^8.08)/(g1^2*g2^2) + (g1^5*g2^3*t^8.08)/g3^4 + (g1^4*g2^4*t^8.08)/g3^4 + (g1^3*g2^5*t^8.08)/g3^4 + (g1^3*g2^2*t^8.08)/g3^3 + (g1^2*g2^3*t^8.08)/g3^3 + (g1*g2*t^8.08)/g3^2 - (4*t^8.08)/(g1*g3) - (4*t^8.08)/(g2*g3) - (4*g3*t^8.08)/(g1^3*g2^4) - (4*g3*t^8.08)/(g1^4*g2^3) + (g3^2*t^8.08)/(g1^5*g2^5) + (g3^3*t^8.08)/(g1^6*g2^7) + (g3^3*t^8.08)/(g1^7*g2^6) + (g3^4*t^8.08)/(g1^7*g2^9) + (g3^4*t^8.08)/(g1^8*g2^8) + (g3^4*t^8.08)/(g1^9*g2^7) + t^8.3/(g1^6*g2^10) + (5*t^8.3)/(g1^7*g2^9) + (14*t^8.3)/(g1^8*g2^8) + (5*t^8.3)/(g1^9*g2^7) + t^8.3/(g1^10*g2^6) + t^8.3/(g1^4*g3^4) + t^8.3/(g2^4*g3^4) + t^8.3/(g1*g2^3*g3^4) + t^8.3/(g1^2*g2^2*g3^4) + t^8.3/(g1^3*g2*g3^4) + (2*t^8.3)/(g1^2*g2^5*g3^3) + (2*t^8.3)/(g1^3*g2^4*g3^3) + (2*t^8.3)/(g1^4*g2^3*g3^3) + (2*t^8.3)/(g1^5*g2^2*g3^3) + t^8.3/(g1^3*g2^7*g3^2) + (5*t^8.3)/(g1^4*g2^6*g3^2) + (5*t^8.3)/(g1^5*g2^5*g3^2) + (5*t^8.3)/(g1^6*g2^4*g3^2) + t^8.3/(g1^7*g2^3*g3^2) + (2*t^8.3)/(g1^5*g2^8*g3) + (8*t^8.3)/(g1^6*g2^7*g3) + (8*t^8.3)/(g1^7*g2^6*g3) + (2*t^8.3)/(g1^8*g2^5*g3) + (2*g3*t^8.3)/(g1^8*g2^11) + (8*g3*t^8.3)/(g1^9*g2^10) + (8*g3*t^8.3)/(g1^10*g2^9) + (2*g3*t^8.3)/(g1^11*g2^8) + (g3^2*t^8.3)/(g1^9*g2^13) + (5*g3^2*t^8.3)/(g1^10*g2^12) + (5*g3^2*t^8.3)/(g1^11*g2^11) + (5*g3^2*t^8.3)/(g1^12*g2^10) + (g3^2*t^8.3)/(g1^13*g2^9) + (2*g3^3*t^8.3)/(g1^11*g2^14) + (2*g3^3*t^8.3)/(g1^12*g2^13) + (2*g3^3*t^8.3)/(g1^13*g2^12) + (2*g3^3*t^8.3)/(g1^14*g2^11) + (g3^4*t^8.3)/(g1^12*g2^16) + (g3^4*t^8.3)/(g1^13*g2^15) + (g3^4*t^8.3)/(g1^14*g2^14) + (g3^4*t^8.3)/(g1^15*g2^13) + (g3^4*t^8.3)/(g1^16*g2^12) + g1^9*g2^9*t^8.66 - 5*g1^3*g2^3*t^8.89 + (g1^8*g2^7*t^8.89)/g3^3 + (g1^7*g2^8*t^8.89)/g3^3 + (g1^6*g2^6*t^8.89)/g3^2 - (g1^5*g2^4*t^8.89)/g3 - (g1^4*g2^5*t^8.89)/g3 - g1^2*g2*g3*t^8.89 - g1*g2^2*g3*t^8.89 + g3^2*t^8.89 + (g3^3*t^8.89)/(g1*g2^2) + (g3^3*t^8.89)/(g1^2*g2) - t^4.04/(g1*g2*y) - (2*t^6.11)/(g1^3*g2^3*y) - t^6.11/(g1*g2^2*g3*y) - t^6.11/(g1^2*g2*g3*y) - (g3*t^6.11)/(g1^4*g2^5*y) - (g3*t^6.11)/(g1^5*g2^4*y) + t^7.15/(g1^3*g2^5*y) + (3*t^7.15)/(g1^4*g2^4*y) + t^7.15/(g1^5*g2^3*y) + t^7.15/(g1*g2*g3^2*y) + (2*t^7.15)/(g1^2*g2^3*g3*y) + (2*t^7.15)/(g1^3*g2^2*g3*y) + (2*g3*t^7.15)/(g1^5*g2^6*y) + (2*g3*t^7.15)/(g1^6*g2^5*y) + (g3^2*t^7.15)/(g1^7*g2^7*y) + (4*g1*g2*t^7.96)/y + (2*g1^3*g2^2*t^7.96)/(g3*y) + (2*g1^2*g2^3*t^7.96)/(g3*y) + (2*g3*t^7.96)/(g1*y) + (2*g3*t^7.96)/(g2*y) - t^8.19/(g1^4*g2^6*y) - (5*t^8.19)/(g1^5*g2^5*y) - t^8.19/(g1^6*g2^4*y) - t^8.19/(g1*g2^3*g3^2*y) - t^8.19/(g1^2*g2^2*g3^2*y) - t^8.19/(g1^3*g2*g3^2*y) - (2*t^8.19)/(g1^3*g2^4*g3*y) - (2*t^8.19)/(g1^4*g2^3*g3*y) - (2*g3*t^8.19)/(g1^6*g2^7*y) - (2*g3*t^8.19)/(g1^7*g2^6*y) - (g3^2*t^8.19)/(g1^7*g2^9*y) - (g3^2*t^8.19)/(g1^8*g2^8*y) - (g3^2*t^8.19)/(g1^9*g2^7*y) - (t^4.04*y)/(g1*g2) - (2*t^6.11*y)/(g1^3*g2^3) - (t^6.11*y)/(g1*g2^2*g3) - (t^6.11*y)/(g1^2*g2*g3) - (g3*t^6.11*y)/(g1^4*g2^5) - (g3*t^6.11*y)/(g1^5*g2^4) + (t^7.15*y)/(g1^3*g2^5) + (3*t^7.15*y)/(g1^4*g2^4) + (t^7.15*y)/(g1^5*g2^3) + (t^7.15*y)/(g1*g2*g3^2) + (2*t^7.15*y)/(g1^2*g2^3*g3) + (2*t^7.15*y)/(g1^3*g2^2*g3) + (2*g3*t^7.15*y)/(g1^5*g2^6) + (2*g3*t^7.15*y)/(g1^6*g2^5) + (g3^2*t^7.15*y)/(g1^7*g2^7) + 4*g1*g2*t^7.96*y + (2*g1^3*g2^2*t^7.96*y)/g3 + (2*g1^2*g2^3*t^7.96*y)/g3 + (2*g3*t^7.96*y)/g1 + (2*g3*t^7.96*y)/g2 - (t^8.19*y)/(g1^4*g2^6) - (5*t^8.19*y)/(g1^5*g2^5) - (t^8.19*y)/(g1^6*g2^4) - (t^8.19*y)/(g1*g2^3*g3^2) - (t^8.19*y)/(g1^2*g2^2*g3^2) - (t^8.19*y)/(g1^3*g2*g3^2) - (2*t^8.19*y)/(g1^3*g2^4*g3) - (2*t^8.19*y)/(g1^4*g2^3*g3) - (2*g3*t^8.19*y)/(g1^6*g2^7) - (2*g3*t^8.19*y)/(g1^7*g2^6) - (g3^2*t^8.19*y)/(g1^7*g2^9) - (g3^2*t^8.19*y)/(g1^8*g2^8) - (g3^2*t^8.19*y)/(g1^9*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46495 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_1M_2$ 0.5861 0.7654 0.7658 [X:[], M:[1.0, 1.0, 0.7055, 0.7055, 0.8528], q:[0.2132, 0.7868], qb:[0.7868, 0.5077], phi:[0.4264]] 2*t^2.12 + t^2.16 + 3*t^2.56 + 2*t^3. + 3*t^4.23 + 2*t^4.28 + 2*t^4.33 + 6*t^4.67 + 4*t^4.72 + 9*t^5.12 + 2*t^5.16 + 4*t^5.56 - t^6. - t^4.28/y - t^4.28*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45944 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ 0.6895 0.8743 0.7886 [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.4789, 0.8263], qb:[0.8263, 0.4789], phi:[0.3474]] 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. - t^4.04/y - t^4.04*y detail