Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1702 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_2q_2\tilde{q}_1$ 0.6485 0.7967 0.8141 [X:[], M:[0.696, 0.696], q:[0.8238, 0.8238], qb:[0.4802, 0.4626], phi:[0.3524]] [X:[], M:[[-7, -1], [-7, -1]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1^4$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_2q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 2*t^2.09 + t^2.11 + t^2.83 + t^3.83 + 2*t^3.86 + t^3.89 + t^3.94 + 3*t^4.18 + 2*t^4.2 + t^4.23 + 2*t^4.92 + 2*t^4.94 + t^5.66 + 2*t^5.92 + 4*t^5.95 + 2*t^5.97 - 2*t^6. + 4*t^6.26 + 3*t^6.29 + 2*t^6.32 + t^6.34 + t^6.66 + 2*t^6.69 + t^6.71 + t^6.77 + 2*t^7. + 2*t^7.03 - 2*t^7.08 - t^7.11 + t^7.67 + 2*t^7.69 + 3*t^7.72 + 2*t^7.74 + t^7.77 + t^7.88 + 3*t^8.01 + 6*t^8.03 + 3*t^8.06 - 4*t^8.09 - 2*t^8.11 - 2*t^8.14 + 5*t^8.35 + 4*t^8.38 + 3*t^8.4 + 2*t^8.43 + t^8.46 + t^8.49 + 2*t^8.75 + 4*t^8.78 + 2*t^8.8 - 3*t^8.83 - 2*t^8.85 - t^4.06/y - (2*t^6.15)/y - t^6.17/y + t^7.18/y + (2*t^7.2)/y + (2*t^7.92)/y + (2*t^7.94)/y + (2*t^7.97)/y - (3*t^8.23)/y - (2*t^8.26)/y - t^8.29/y + (2*t^8.92)/y + (5*t^8.95)/y + (4*t^8.97)/y - t^4.06*y - 2*t^6.15*y - t^6.17*y + t^7.18*y + 2*t^7.2*y + 2*t^7.92*y + 2*t^7.94*y + 2*t^7.97*y - 3*t^8.23*y - 2*t^8.26*y - t^8.29*y + 2*t^8.92*y + 5*t^8.95*y + 4*t^8.97*y (2*t^2.09)/(g1^7*g2) + t^2.11/(g1^4*g2^4) + g1^6*g2^6*t^2.83 + (g2^10*t^3.83)/g1^2 + 2*g1*g2^7*t^3.86 + g1^4*g2^4*t^3.89 + (g1^10*t^3.94)/g2^2 + (3*t^4.18)/(g1^14*g2^2) + (2*t^4.2)/(g1^11*g2^5) + t^4.23/(g1^8*g2^8) + (2*g2^5*t^4.92)/g1 + 2*g1^2*g2^2*t^4.94 + g1^12*g2^12*t^5.66 + (2*g2^9*t^5.92)/g1^9 + (4*g2^6*t^5.95)/g1^6 + (2*g2^3*t^5.97)/g1^3 - 2*t^6. + (4*t^6.26)/(g1^21*g2^3) + (3*t^6.29)/(g1^18*g2^6) + (2*t^6.32)/(g1^15*g2^9) + t^6.34/(g1^12*g2^12) + g1^4*g2^16*t^6.66 + 2*g1^7*g2^13*t^6.69 + g1^10*g2^10*t^6.71 + g1^16*g2^4*t^6.77 + (2*g2^4*t^7.)/g1^8 + (2*g2*t^7.03)/g1^5 - (2*g1*t^7.08)/g2^5 - (g1^4*t^7.11)/g2^8 + (g2^20*t^7.67)/g1^4 + (2*g2^17*t^7.69)/g1 + 3*g1^2*g2^14*t^7.72 + 2*g1^5*g2^11*t^7.74 + g1^8*g2^8*t^7.77 + (g1^20*t^7.88)/g2^4 + (3*g2^8*t^8.01)/g1^16 + (6*g2^5*t^8.03)/g1^13 + (3*g2^2*t^8.06)/g1^10 - (4*t^8.09)/(g1^7*g2) - (2*t^8.11)/(g1^4*g2^4) - (2*t^8.14)/(g1*g2^7) + (5*t^8.35)/(g1^28*g2^4) + (4*t^8.38)/(g1^25*g2^7) + (3*t^8.4)/(g1^22*g2^10) + (2*t^8.43)/(g1^19*g2^13) + t^8.46/(g1^16*g2^16) + g1^18*g2^18*t^8.49 + (2*g2^15*t^8.75)/g1^3 + 4*g2^12*t^8.78 + 2*g1^3*g2^9*t^8.8 - 3*g1^6*g2^6*t^8.83 - 2*g1^9*g2^3*t^8.85 - t^4.06/(g1^2*g2^2*y) - (2*t^6.15)/(g1^9*g2^3*y) - t^6.17/(g1^6*g2^6*y) + t^7.18/(g1^14*g2^2*y) + (2*t^7.2)/(g1^11*g2^5*y) + (2*g2^5*t^7.92)/(g1*y) + (2*g1^2*g2^2*t^7.94)/y + (2*g1^5*t^7.97)/(g2*y) - (3*t^8.23)/(g1^16*g2^4*y) - (2*t^8.26)/(g1^13*g2^7*y) - t^8.29/(g1^10*g2^10*y) + (2*g2^9*t^8.92)/(g1^9*y) + (5*g2^6*t^8.95)/(g1^6*y) + (4*g2^3*t^8.97)/(g1^3*y) - (t^4.06*y)/(g1^2*g2^2) - (2*t^6.15*y)/(g1^9*g2^3) - (t^6.17*y)/(g1^6*g2^6) + (t^7.18*y)/(g1^14*g2^2) + (2*t^7.2*y)/(g1^11*g2^5) + (2*g2^5*t^7.92*y)/g1 + 2*g1^2*g2^2*t^7.94*y + (2*g1^5*t^7.97*y)/g2 - (3*t^8.23*y)/(g1^16*g2^4) - (2*t^8.26*y)/(g1^13*g2^7) - (t^8.29*y)/(g1^10*g2^10) + (2*g2^9*t^8.92*y)/g1^9 + (5*g2^6*t^8.95*y)/g1^6 + (4*g2^3*t^8.97*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ 0.628 0.7573 0.8293 [X:[], M:[0.7035], q:[0.8228, 0.8228], qb:[0.4737, 0.4628], phi:[0.3545]] t^2.11 + t^2.13 + t^2.81 + t^3.84 + 2*t^3.86 + t^3.87 + t^3.89 + t^3.91 + t^4.22 + t^4.24 + t^4.25 + t^4.92 + 2*t^4.94 + t^5.62 + t^5.95 + 2*t^5.97 + t^5.98 - t^6. - t^4.06/y - t^4.06*y detail