Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1763 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ 0.7102 0.9148 0.7763 [X:[], M:[0.6894, 0.6991, 0.6862, 0.6926, 0.6894], q:[0.8268, 0.8268], qb:[0.4837, 0.4773], phi:[0.3463]] [X:[], M:[[-7, -1], [2, -10], [-10, 2], [-4, -4], [-7, -1]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_5$, $ M_4$, $ \phi_1^2$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_3M_5$, $ M_1^2$, $ M_3M_4$, $ M_1M_5$, $ M_5^2$, $ M_3\phi_1^2$, $ M_1M_4$, $ M_4M_5$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ M_2M_3$, $ M_4^2$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_2$, $ M_2M_5$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_2^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$ . -3 t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.1 + t^2.88 + 2*t^3.91 + t^4.12 + 2*t^4.13 + 5*t^4.14 + 4*t^4.15 + 4*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.94 + 2*t^4.95 + 3*t^4.96 + t^4.98 + t^5.77 + 2*t^5.97 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^6.02 + t^6.18 + 2*t^6.19 + 13*t^6.2 + 10*t^6.21 + 8*t^6.22 + 9*t^6.23 + 4*t^6.24 + 4*t^6.25 + 2*t^6.26 + 2*t^6.27 + t^6.29 + 2*t^6.8 + t^7. + 2*t^7.01 + 5*t^7.02 + 4*t^7.03 + 4*t^7.04 + 2*t^7.06 + t^7.08 + 3*t^7.82 - 2*t^7.85 + 2*t^8.03 + 3*t^8.04 + 6*t^8.05 - t^8.06 - 4*t^8.07 - 7*t^8.08 - 4*t^8.09 - 5*t^8.1 - t^8.12 + t^8.23 + 2*t^8.24 + 5*t^8.25 + 8*t^8.26 + 15*t^8.27 + 16*t^8.28 + 18*t^8.29 + 16*t^8.3 + 15*t^8.31 + 8*t^8.32 + 9*t^8.33 + 4*t^8.34 + 4*t^8.35 + 2*t^8.36 + 2*t^8.37 + t^8.39 + t^8.65 + 2*t^8.85 + 2*t^8.86 + 2*t^8.87 - 5*t^8.88 - 2*t^8.89 - 2*t^8.9 - t^4.04/y - t^6.1/y - (2*t^6.11)/y - (2*t^6.12)/y - t^6.14/y + (2*t^7.13)/y + (3*t^7.14)/y + (4*t^7.15)/y + (2*t^7.16)/y + (2*t^7.17)/y + (2*t^7.18)/y + (2*t^7.94)/y + (2*t^7.95)/y + (4*t^7.96)/y + (2*t^7.97)/y + (2*t^7.98)/y - t^8.16/y - (2*t^8.17)/y - (5*t^8.18)/y - (8*t^8.19)/y - (2*t^8.2)/y - (2*t^8.21)/y - t^8.23/y + (2*t^8.97)/y + (4*t^8.98)/y + (4*t^8.99)/y - t^4.04*y - t^6.1*y - 2*t^6.11*y - 2*t^6.12*y - t^6.14*y + 2*t^7.13*y + 3*t^7.14*y + 4*t^7.15*y + 2*t^7.16*y + 2*t^7.17*y + 2*t^7.18*y + 2*t^7.94*y + 2*t^7.95*y + 4*t^7.96*y + 2*t^7.97*y + 2*t^7.98*y - t^8.16*y - 2*t^8.17*y - 5*t^8.18*y - 8*t^8.19*y - 2*t^8.2*y - 2*t^8.21*y - t^8.23*y + 2*t^8.97*y + 4*t^8.98*y + 4*t^8.99*y (g2^2*t^2.06)/g1^10 + (2*t^2.07)/(g1^7*g2) + (2*t^2.08)/(g1^4*g2^4) + (g1^2*t^2.1)/g2^10 + g1^6*g2^6*t^2.88 + 2*g1*g2^7*t^3.91 + (g2^4*t^4.12)/g1^20 + (2*g2*t^4.13)/g1^17 + (5*t^4.14)/(g1^14*g2^2) + (4*t^4.15)/(g1^11*g2^5) + (4*t^4.16)/(g1^8*g2^8) + (2*t^4.17)/(g1^5*g2^11) + (2*t^4.18)/(g1^2*g2^14) + (g1^4*t^4.19)/g2^20 + (g2^8*t^4.94)/g1^4 + (2*g2^5*t^4.95)/g1 + 3*g1^2*g2^2*t^4.96 + (g1^8*t^4.98)/g2^4 + g1^12*g2^12*t^5.77 + (2*g2^9*t^5.97)/g1^9 + (3*g2^6*t^5.98)/g1^6 + (2*g2^3*t^5.99)/g1^3 - 3*t^6. - (g1^6*t^6.02)/g2^6 + (g2^6*t^6.18)/g1^30 + (2*g2^3*t^6.19)/g1^27 + (5*t^6.2)/g1^24 + (8*t^6.2)/(g1^21*g2^3) + (10*t^6.21)/(g1^18*g2^6) + (8*t^6.22)/(g1^15*g2^9) + (9*t^6.23)/(g1^12*g2^12) + (4*t^6.24)/(g1^9*g2^15) + (4*t^6.25)/(g1^6*g2^18) + (2*t^6.26)/(g1^3*g2^21) + (2*t^6.27)/g2^24 + (g1^6*t^6.29)/g2^30 + 2*g1^7*g2^13*t^6.8 + (g2^10*t^7.)/g1^14 + (2*g2^7*t^7.01)/g1^11 + (5*g2^4*t^7.02)/g1^8 + (4*g2*t^7.03)/g1^5 + (4*t^7.04)/(g1^2*g2^2) + (2*g1^4*t^7.06)/g2^8 + (g1^10*t^7.08)/g2^14 + 3*g1^2*g2^14*t^7.82 - 2*g1^11*g2^5*t^7.85 + (2*g2^11*t^8.03)/g1^19 + (3*g2^8*t^8.04)/g1^16 + (6*g2^5*t^8.05)/g1^13 - (g2^2*t^8.06)/g1^10 - (4*t^8.07)/(g1^7*g2) - (7*t^8.08)/(g1^4*g2^4) - (4*t^8.09)/(g1*g2^7) - (5*g1^2*t^8.1)/g2^10 - (g1^8*t^8.12)/g2^16 + (g2^8*t^8.23)/g1^40 + (2*g2^5*t^8.24)/g1^37 + (5*g2^2*t^8.25)/g1^34 + (8*t^8.26)/(g1^31*g2) + (15*t^8.27)/(g1^28*g2^4) + (16*t^8.28)/(g1^25*g2^7) + (18*t^8.29)/(g1^22*g2^10) + (16*t^8.3)/(g1^19*g2^13) + (15*t^8.31)/(g1^16*g2^16) + (8*t^8.32)/(g1^13*g2^19) + (9*t^8.33)/(g1^10*g2^22) + (4*t^8.34)/(g1^7*g2^25) + (4*t^8.35)/(g1^4*g2^28) + (2*t^8.36)/(g1*g2^31) + (2*g1^2*t^8.37)/g2^34 + (g1^8*t^8.39)/g2^40 + g1^18*g2^18*t^8.65 + (2*g2^15*t^8.85)/g1^3 + 2*g2^12*t^8.86 + 2*g1^3*g2^9*t^8.87 - 5*g1^6*g2^6*t^8.88 - 2*g1^9*g2^3*t^8.89 - 2*g1^12*t^8.9 - t^4.04/(g1^2*g2^2*y) - t^6.1/(g1^12*y) - (2*t^6.11)/(g1^9*g2^3*y) - (2*t^6.12)/(g1^6*g2^6*y) - t^6.14/(g2^12*y) + (2*g2*t^7.13)/(g1^17*y) + (3*t^7.14)/(g1^14*g2^2*y) + (4*t^7.15)/(g1^11*g2^5*y) + (2*t^7.16)/(g1^8*g2^8*y) + (2*t^7.17)/(g1^5*g2^11*y) + (2*t^7.18)/(g1^2*g2^14*y) + (2*g2^8*t^7.94)/(g1^4*y) + (2*g2^5*t^7.95)/(g1*y) + (4*g1^2*g2^2*t^7.96)/y + (2*g1^5*t^7.97)/(g2*y) + (2*g1^8*t^7.98)/(g2^4*y) - (g2^2*t^8.16)/(g1^22*y) - (2*t^8.17)/(g1^19*g2*y) - (5*t^8.18)/(g1^16*g2^4*y) - (4*t^8.19)/(g1^10*g2^10*y) - (4*t^8.19)/(g1^13*g2^7*y) - (2*t^8.2)/(g1^7*g2^13*y) - (2*t^8.21)/(g1^4*g2^16*y) - (g1^2*t^8.23)/(g2^22*y) + (2*g2^9*t^8.97)/(g1^9*y) + (4*g2^6*t^8.98)/(g1^6*y) + (4*g2^3*t^8.99)/(g1^3*y) - (t^4.04*y)/(g1^2*g2^2) - (t^6.1*y)/g1^12 - (2*t^6.11*y)/(g1^9*g2^3) - (2*t^6.12*y)/(g1^6*g2^6) - (t^6.14*y)/g2^12 + (2*g2*t^7.13*y)/g1^17 + (3*t^7.14*y)/(g1^14*g2^2) + (4*t^7.15*y)/(g1^11*g2^5) + (2*t^7.16*y)/(g1^8*g2^8) + (2*t^7.17*y)/(g1^5*g2^11) + (2*t^7.18*y)/(g1^2*g2^14) + (2*g2^8*t^7.94*y)/g1^4 + (2*g2^5*t^7.95*y)/g1 + 4*g1^2*g2^2*t^7.96*y + (2*g1^5*t^7.97*y)/g2 + (2*g1^8*t^7.98*y)/g2^4 - (g2^2*t^8.16*y)/g1^22 - (2*t^8.17*y)/(g1^19*g2) - (5*t^8.18*y)/(g1^16*g2^4) - (4*t^8.19*y)/(g1^10*g2^10) - (4*t^8.19*y)/(g1^13*g2^7) - (2*t^8.2*y)/(g1^7*g2^13) - (2*t^8.21*y)/(g1^4*g2^16) - (g1^2*t^8.23*y)/g2^22 + (2*g2^9*t^8.97*y)/g1^9 + (4*g2^6*t^8.98*y)/g1^6 + (4*g2^3*t^8.99*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
244 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ 0.6895 0.8744 0.7885 [X:[], M:[0.6931, 0.6987, 0.6912, 0.695], q:[0.8263, 0.8263], qb:[0.4806, 0.4769], phi:[0.3475]] t^2.07 + 3*t^2.08 + t^2.1 + t^2.87 + 2*t^3.91 + t^3.92 + 2*t^4.15 + 5*t^4.16 + 4*t^4.17 + 3*t^4.18 + t^4.19 + 2*t^4.95 + 3*t^4.96 + t^4.97 + t^5.75 + 2*t^5.98 + 4*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y detail