Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
389 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ 0.6691 0.8364 0.8 [M:[0.6923, 0.7194, 0.6833, 0.7014, 1.2806], q:[0.8247, 0.8247], qb:[0.483, 0.4649], phi:[0.3507]] [M:[[-7, -1], [2, -10], [-10, 2], [-4, -4], [-2, 10]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ ${}M_{1}q_{2}\tilde{q}_{1}$ -2 t^2.05 + t^2.077 + 2*t^2.104 + t^2.844 + t^3.842 + 2*t^3.869 + t^3.923 + t^4.1 + t^4.127 + 3*t^4.154 + 2*t^4.181 + 3*t^4.208 + t^4.894 + t^4.921 + 3*t^4.948 + t^5.688 + t^5.892 + 3*t^5.919 + 3*t^5.946 + 3*t^5.973 - 2*t^6. - t^6.054 + t^6.149 + t^6.177 + 3*t^6.204 + 3*t^6.231 + 5*t^6.258 + 3*t^6.285 + 4*t^6.312 + t^6.686 + 2*t^6.713 + t^6.767 + t^6.944 + t^6.971 + 3*t^6.998 + t^7.025 + 3*t^7.052 - 2*t^7.079 - t^7.106 + t^7.683 + 2*t^7.711 + 3*t^7.738 + 2*t^7.792 - 2*t^7.819 + t^7.941 + 3*t^7.968 + 4*t^7.996 + 6*t^8.023 + t^8.05 - 6*t^8.104 - 2*t^8.131 - 2*t^8.158 + t^8.199 + t^8.226 + 3*t^8.254 + 3*t^8.281 + 6*t^8.308 + 5*t^8.335 + 7*t^8.362 + 4*t^8.389 + 5*t^8.416 + t^8.532 + t^8.735 + 3*t^8.763 + 3*t^8.79 + 3*t^8.817 - 4*t^8.844 - t^8.871 - 2*t^8.898 + t^8.993 - t^4.052/y - t^6.102/y - t^6.129/y - (2*t^6.156)/y + t^7.127/y + (2*t^7.154)/y + (2*t^7.181)/y + t^7.208/y + t^7.894/y + t^7.921/y + (4*t^7.948)/y + t^7.975/y + t^8.002/y - t^8.152/y - t^8.179/y - (3*t^8.206)/y - (2*t^8.233)/y - (3*t^8.26)/y + t^8.892/y + (3*t^8.919)/y + (4*t^8.946)/y + (5*t^8.973)/y - t^4.052*y - t^6.102*y - t^6.129*y - 2*t^6.156*y + t^7.127*y + 2*t^7.154*y + 2*t^7.181*y + t^7.208*y + t^7.894*y + t^7.921*y + 4*t^7.948*y + t^7.975*y + t^8.002*y - t^8.152*y - t^8.179*y - 3*t^8.206*y - 2*t^8.233*y - 3*t^8.26*y + t^8.892*y + 3*t^8.919*y + 4*t^8.946*y + 5*t^8.973*y (g2^2*t^2.05)/g1^10 + t^2.077/(g1^7*g2) + (2*t^2.104)/(g1^4*g2^4) + g1^6*g2^6*t^2.844 + (g2^10*t^3.842)/g1^2 + 2*g1*g2^7*t^3.869 + g1^7*g2*t^3.923 + (g2^4*t^4.1)/g1^20 + (g2*t^4.127)/g1^17 + (3*t^4.154)/(g1^14*g2^2) + (2*t^4.181)/(g1^11*g2^5) + (3*t^4.208)/(g1^8*g2^8) + (g2^8*t^4.894)/g1^4 + (g2^5*t^4.921)/g1 + 3*g1^2*g2^2*t^4.948 + g1^12*g2^12*t^5.688 + (g2^12*t^5.892)/g1^12 + (3*g2^9*t^5.919)/g1^9 + (3*g2^6*t^5.946)/g1^6 + (3*g2^3*t^5.973)/g1^3 - 2*t^6. - (g1^6*t^6.054)/g2^6 + (g2^6*t^6.149)/g1^30 + (g2^3*t^6.177)/g1^27 + (3*t^6.204)/g1^24 + (3*t^6.231)/(g1^21*g2^3) + (5*t^6.258)/(g1^18*g2^6) + (3*t^6.285)/(g1^15*g2^9) + (4*t^6.312)/(g1^12*g2^12) + g1^4*g2^16*t^6.686 + 2*g1^7*g2^13*t^6.713 + g1^13*g2^7*t^6.767 + (g2^10*t^6.944)/g1^14 + (g2^7*t^6.971)/g1^11 + (3*g2^4*t^6.998)/g1^8 + (g2*t^7.025)/g1^5 + (3*t^7.052)/(g1^2*g2^2) - (2*g1*t^7.079)/g2^5 - (g1^4*t^7.106)/g2^8 + (g2^20*t^7.683)/g1^4 + (2*g2^17*t^7.711)/g1 + 3*g1^2*g2^14*t^7.738 + 2*g1^8*g2^8*t^7.792 - 2*g1^11*g2^5*t^7.819 + (g2^14*t^7.941)/g1^22 + (3*g2^11*t^7.968)/g1^19 + (4*g2^8*t^7.996)/g1^16 + (6*g2^5*t^8.023)/g1^13 + (g2^2*t^8.05)/g1^10 - (6*t^8.104)/(g1^4*g2^4) - (2*t^8.131)/(g1*g2^7) - (2*g1^2*t^8.158)/g2^10 + (g2^8*t^8.199)/g1^40 + (g2^5*t^8.226)/g1^37 + (3*g2^2*t^8.254)/g1^34 + (3*t^8.281)/(g1^31*g2) + (6*t^8.308)/(g1^28*g2^4) + (5*t^8.335)/(g1^25*g2^7) + (7*t^8.362)/(g1^22*g2^10) + (4*t^8.389)/(g1^19*g2^13) + (5*t^8.416)/(g1^16*g2^16) + g1^18*g2^18*t^8.532 + (g2^18*t^8.735)/g1^6 + (3*g2^15*t^8.763)/g1^3 + 3*g2^12*t^8.79 + 3*g1^3*g2^9*t^8.817 - 4*g1^6*g2^6*t^8.844 - g1^9*g2^3*t^8.871 - 2*g1^12*t^8.898 + (g2^12*t^8.993)/g1^24 - t^4.052/(g1^2*g2^2*y) - t^6.102/(g1^12*y) - t^6.129/(g1^9*g2^3*y) - (2*t^6.156)/(g1^6*g2^6*y) + (g2*t^7.127)/(g1^17*y) + (2*t^7.154)/(g1^14*g2^2*y) + (2*t^7.181)/(g1^11*g2^5*y) + t^7.208/(g1^8*g2^8*y) + (g2^8*t^7.894)/(g1^4*y) + (g2^5*t^7.921)/(g1*y) + (4*g1^2*g2^2*t^7.948)/y + (g1^5*t^7.975)/(g2*y) + (g1^8*t^8.002)/(g2^4*y) - (g2^2*t^8.152)/(g1^22*y) - t^8.179/(g1^19*g2*y) - (3*t^8.206)/(g1^16*g2^4*y) - (2*t^8.233)/(g1^13*g2^7*y) - (3*t^8.26)/(g1^10*g2^10*y) + (g2^12*t^8.892)/(g1^12*y) + (3*g2^9*t^8.919)/(g1^9*y) + (4*g2^6*t^8.946)/(g1^6*y) + (5*g2^3*t^8.973)/(g1^3*y) - (t^4.052*y)/(g1^2*g2^2) - (t^6.102*y)/g1^12 - (t^6.129*y)/(g1^9*g2^3) - (2*t^6.156*y)/(g1^6*g2^6) + (g2*t^7.127*y)/g1^17 + (2*t^7.154*y)/(g1^14*g2^2) + (2*t^7.181*y)/(g1^11*g2^5) + (t^7.208*y)/(g1^8*g2^8) + (g2^8*t^7.894*y)/g1^4 + (g2^5*t^7.921*y)/g1 + 4*g1^2*g2^2*t^7.948*y + (g1^5*t^7.975*y)/g2 + (g1^8*t^8.002*y)/g2^4 - (g2^2*t^8.152*y)/g1^22 - (t^8.179*y)/(g1^19*g2) - (3*t^8.206*y)/(g1^16*g2^4) - (2*t^8.233*y)/(g1^13*g2^7) - (3*t^8.26*y)/(g1^10*g2^10) + (g2^12*t^8.892*y)/g1^12 + (3*g2^9*t^8.919*y)/g1^9 + (4*g2^6*t^8.946*y)/g1^6 + (5*g2^3*t^8.973*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1836 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6898 0.8768 0.7867 [M:[0.6887, 0.72, 0.6783, 0.6991, 1.28, 0.6887], q:[0.8252, 0.8252], qb:[0.4861, 0.4652], phi:[0.3496]] t^2.035 + 2*t^2.066 + 2*t^2.097 + t^2.854 + t^3.84 + 2*t^3.871 + t^4.07 + 2*t^4.101 + 5*t^4.132 + 4*t^4.164 + 3*t^4.195 + t^4.889 + 2*t^4.92 + 3*t^4.951 + t^5.708 + t^5.875 + 4*t^5.906 + 5*t^5.938 + 2*t^5.969 - 3*t^6. - t^4.049/y - t^4.049*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
244 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6895 0.8744 0.7885 [M:[0.6931, 0.6987, 0.6912, 0.695], q:[0.8263, 0.8263], qb:[0.4806, 0.4769], phi:[0.3475]] t^2.074 + t^2.079 + 2*t^2.085 + t^2.096 + t^2.873 + 2*t^3.909 + t^3.921 + t^4.147 + t^4.153 + 3*t^4.159 + 2*t^4.164 + 4*t^4.17 + t^4.176 + 2*t^4.181 + t^4.192 + t^4.946 + t^4.952 + 3*t^4.958 + t^4.969 + t^5.745 + 2*t^5.983 + t^5.989 + 3*t^5.994 - 2*t^6. - t^4.042/y - t^4.042*y detail