Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
984 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6579 0.8086 0.8137 [M:[1.0037, 0.7433, 0.9002, 0.8467, 1.1533, 1.1265], q:[0.6247, 0.3716], qb:[0.4751, 0.7816], phi:[0.4367]] [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [0, 8]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{6}$ ${}$ -2 t^2.23 + t^2.54 + t^2.701 + t^3.011 + t^3.38 + t^3.46 + t^3.54 + t^3.85 + t^4.161 + t^4.219 + t^4.299 + t^4.46 + t^4.61 + t^4.77 + t^4.93 + t^5.058 + t^5.08 + t^5.241 + t^5.401 + t^5.609 + t^5.712 + t^5.77 + t^5.92 - 2*t^6. + t^6.022 + 2*t^6.08 + t^6.16 + t^6.241 - t^6.31 + 2*t^6.391 + t^6.529 + t^6.551 + t^6.689 + t^6.701 + t^6.839 + t^6.862 + t^6.92 + 2*t^7. + t^7.08 + t^7.16 + t^7.172 + t^7.288 + t^7.31 + t^7.39 + t^7.471 + t^7.598 + t^7.621 + t^7.631 + t^7.679 + t^7.701 + t^7.759 + 2*t^7.839 + t^7.942 + t^8. + t^8.011 + t^8.102 + t^8.15 - 3*t^8.23 + t^8.252 + 2*t^8.31 + t^8.322 + t^8.412 + t^8.438 + t^8.46 + t^8.47 + t^8.518 - 3*t^8.54 + t^8.598 + 2*t^8.62 - 3*t^8.701 + t^8.723 + t^8.759 + t^8.77 + t^8.781 - t^8.851 + t^8.861 + t^8.919 + t^8.931 + t^8.941 - t^8.989 - t^4.31/y - t^6.54/y - t^7.011/y + t^7.299/y - t^7.321/y + t^7.61/y + t^7.77/y + t^7.93/y + t^8.08/y + (2*t^8.241)/y + t^8.551/y + t^8.609/y + t^8.69/y + t^8.712/y + t^8.92/y - t^4.31*y - t^6.54*y - t^7.011*y + t^7.299*y - t^7.321*y + t^7.61*y + t^7.77*y + t^7.93*y + t^8.08*y + 2*t^8.241*y + t^8.551*y + t^8.609*y + t^8.69*y + t^8.712*y + t^8.92*y t^2.23/(g1^2*g2^2) + (g1*t^2.54)/g2 + t^2.701/(g1*g2^15) + (g1^2*t^3.011)/g2^14 + g2^8*t^3.38 + (g2*t^3.46)/g1 + t^3.54/(g1^2*g2^6) + (g1*t^3.85)/g2^5 + (g1^4*t^4.161)/g2^4 + (g2^17*t^4.219)/g1 + (g2^10*t^4.299)/g1^2 + t^4.46/(g1^4*g2^4) + g1*g2^11*t^4.61 + t^4.77/(g1*g2^3) + t^4.93/(g1^3*g2^17) + (g2^26*t^5.058)/g1^2 + (g1^2*t^5.08)/g2^2 + t^5.241/g2^16 + t^5.401/(g1^2*g2^30) + (g2^6*t^5.609)/g1^2 + (g1*t^5.712)/g2^29 + t^5.77/(g1^4*g2^8) + g1*g2^7*t^5.92 - 2*t^6. + (g1^4*t^6.022)/g2^28 + (2*t^6.08)/(g1*g2^7) + t^6.16/(g1^2*g2^14) + t^6.241/(g1^3*g2^21) - g1^3*g2*t^6.31 + (2*g1^2*t^6.391)/g2^6 + (g2^8*t^6.529)/g1^4 + t^6.551/g2^20 + t^6.689/(g1^6*g2^6) + (g1^5*t^6.701)/g2^5 + (g2^9*t^6.839)/g1 + (g1^3*t^6.862)/g2^19 + (g2^2*t^6.92)/g1^2 + (2*t^7.)/(g1^3*g2^5) + t^7.08/(g1^4*g2^12) + t^7.16/(g1^5*g2^19) + (g1^6*t^7.172)/g2^18 + (g2^24*t^7.288)/g1^4 + t^7.31/g2^4 + t^7.39/(g1*g2^11) + t^7.471/(g1^2*g2^18) + (g2^25*t^7.598)/g1 + (g1^3*t^7.621)/g2^3 + t^7.631/(g1^4*g2^32) + (g2^18*t^7.679)/g1^2 + (g1^2*t^7.701)/g2^10 + (g2^11*t^7.759)/g1^3 + (2*g2^4*t^7.839)/g1^4 + t^7.942/(g1*g2^31) + t^8./(g1^6*g2^10) + (g1^5*t^8.011)/g2^9 + t^8.102/(g1^3*g2^45) + (g2^5*t^8.15)/g1 - (3*t^8.23)/(g1^2*g2^2) + (g1^2*t^8.252)/g2^30 + (2*t^8.31)/(g1^3*g2^9) + (g1^8*t^8.322)/g2^8 + t^8.412/g2^44 + (g2^34*t^8.438)/g1^2 + g1^2*g2^6*t^8.46 + t^8.47/(g1^5*g2^23) + (g2^27*t^8.518)/g1^3 - (3*g1*t^8.54)/g2 + (g2^20*t^8.598)/g1^4 + (2*t^8.62)/g2^8 - (3*t^8.701)/(g1*g2^15) + (g1^3*t^8.723)/g2^43 + (g2^6*t^8.759)/g1^6 + g1^5*g2^7*t^8.77 + t^8.781/(g1^2*g2^22) - g1^4*t^8.851 + t^8.861/(g1^3*g2^29) + t^8.919/(g1^8*g2^8) + (g1^3*t^8.931)/g2^7 + t^8.941/(g1^4*g2^36) - (g2^14*t^8.989)/g1^2 - t^4.31/(g2^4*y) - t^6.54/(g1^2*g2^6*y) - t^7.011/(g1*g2^19*y) + (g2^10*t^7.299)/(g1^2*y) - (g1^2*t^7.321)/(g2^18*y) + (g1*g2^11*t^7.61)/y + t^7.77/(g1*g2^3*y) + t^7.93/(g1^3*g2^17*y) + (g1^2*t^8.08)/(g2^2*y) + (2*t^8.241)/(g2^16*y) + (g1^3*t^8.551)/(g2^15*y) + (g2^6*t^8.609)/(g1^2*y) + t^8.69/(g1^3*g2*y) + (g1*t^8.712)/(g2^29*y) + (g1*g2^7*t^8.92)/y - (t^4.31*y)/g2^4 - (t^6.54*y)/(g1^2*g2^6) - (t^7.011*y)/(g1*g2^19) + (g2^10*t^7.299*y)/g1^2 - (g1^2*t^7.321*y)/g2^18 + g1*g2^11*t^7.61*y + (t^7.77*y)/(g1*g2^3) + (t^7.93*y)/(g1^3*g2^17) + (g1^2*t^8.08*y)/g2^2 + (2*t^8.241*y)/g2^16 + (g1^3*t^8.551*y)/g2^15 + (g2^6*t^8.609*y)/g1^2 + (t^8.69*y)/(g1^3*g2) + (g1*t^8.712*y)/g2^29 + g1*g2^7*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1541 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ 0.6343 0.7825 0.8106 [M:[0.8386, 0.8386, 0.8867, 0.7904, 1.2096, 1.1614], q:[0.7422, 0.4193], qb:[0.3711, 0.7904], phi:[0.4193]] t^2.371 + 2*t^2.516 + t^2.66 + 2*t^3.484 + 2*t^3.629 + t^3.773 + 2*t^4.598 + 2*t^4.742 + t^4.887 + 3*t^5.031 + 2*t^5.176 + t^5.32 + t^5.711 + t^5.855 + 2*t^6. - t^4.258/y - t^4.258*y detail
1543 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ 0.6562 0.8056 0.8146 [M:[0.994, 0.7784, 0.9401, 0.8323, 1.1677, 1.1138], q:[0.6167, 0.3892], qb:[0.4431, 0.7784], phi:[0.4431]] t^2.335 + t^2.497 + t^2.82 + t^2.982 + t^3.341 + t^3.503 + t^3.665 + t^3.826 + t^3.988 + t^4.186 + t^4.347 + t^4.509 + t^4.671 + t^4.832 + t^4.994 + t^5.03 + t^5.156 + t^5.317 + t^5.641 + t^5.677 + t^5.803 + t^5.838 + t^5.964 - t^6. - t^4.329/y - t^4.329*y detail
1545 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{3}M_{7}$ 0.6522 0.7999 0.8154 [M:[1.0397, 0.7772, 0.9784, 0.8385, 1.1615, 1.0915, 1.0216], q:[0.5717, 0.3886], qb:[0.4499, 0.7729], phi:[0.4542]] t^2.332 + t^2.515 + t^3.065 + t^3.119 + t^3.275 + t^3.485 + t^3.694 + t^3.878 + t^4.034 + t^4.062 + t^4.244 + t^4.427 + t^4.663 + t^4.793 + t^4.847 + t^5.031 + t^5.396 + t^5.58 + t^5.606 + t^5.79 - 2*t^6. - t^4.363/y - t^4.363*y detail
1546 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6781 0.8467 0.8009 [M:[1.011, 0.7404, 0.9027, 0.8487, 1.1513, 1.1243, 0.7134], q:[0.6188, 0.3702], qb:[0.4785, 0.7811], phi:[0.4379]] t^2.14 + t^2.221 + t^2.546 + t^2.708 + t^3.033 + t^3.373 + t^3.454 + t^3.535 + t^4.185 + t^4.2 + 2*t^4.281 + t^4.362 + t^4.443 + t^4.605 + t^4.686 + t^4.767 + t^4.848 + t^4.929 + t^5.026 + t^5.092 + t^5.173 + t^5.254 + t^5.416 + t^5.513 + 2*t^5.594 + t^5.675 + t^5.741 + t^5.756 + t^5.919 - 2*t^6. - t^4.314/y - t^4.314*y detail
1544 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.6741 0.8369 0.8055 [M:[1.0013, 0.7671, 0.9309, 0.8375, 1.1625, 1.1158, 0.7907], q:[0.6152, 0.3836], qb:[0.4539, 0.7789], phi:[0.4421]] t^2.301 + t^2.372 + t^2.512 + t^2.793 + t^3.004 + t^3.347 + t^3.488 + t^3.839 + t^4.05 + t^4.182 + t^4.323 + t^4.534 + t^4.603 + t^4.674 + t^4.744 + t^4.814 + t^4.885 + t^5.017 + t^5.025 + t^5.094 + t^5.165 + t^5.305 + t^5.376 + t^5.586 + t^5.649 + t^5.72 + t^5.797 + 2*t^5.86 - 2*t^6. - t^4.326/y - t^4.326*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
609 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.6698 0.8297 0.8073 [M:[0.9823, 0.7363, 0.8719, 0.8467, 1.1533], q:[0.6495, 0.3682], qb:[0.4785, 0.7852], phi:[0.4297]] t^2.209 + t^2.54 + t^2.578 + t^2.616 + t^2.947 + t^3.46 + t^3.498 + t^3.829 + t^4.16 + t^4.304 + t^4.342 + t^4.418 + t^4.673 + t^4.749 + t^4.787 + t^4.825 + t^5.08 + t^5.118 + 2*t^5.156 + t^5.186 + t^5.194 + t^5.232 + t^5.525 + t^5.563 + t^5.707 + t^5.894 - 2*t^6. - t^4.289/y - t^4.289*y detail