Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60481 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4758 | 1.6873 | 0.8746 | [X:[1.3292], M:[0.9697, 0.9938, 0.677], q:[0.4816, 0.5119], qb:[0.5184, 0.4756], phi:[0.3354]] | [X:[[0, 0, 2]], M:[[-1, 1, -6], [0, 0, 3], [0, 0, -5]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | t^2.03 + t^2.87 + t^2.91 + t^2.96 + t^2.98 + t^3. + t^3.88 + t^3.99 + t^4.01 + t^4.06 + t^4.1 + t^4.88 + t^4.9 + t^4.94 + t^4.98 + t^4.99 + 2*t^5.01 + t^5.03 + t^5.1 + t^5.42 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + t^5.98 - 3*t^6. + t^6.02 + t^6.04 + t^6.42 + t^6.44 + t^6.53 + t^6.55 + t^6.75 + t^6.79 + t^6.84 + 2*t^6.86 + t^6.88 + t^6.9 + t^6.92 + t^6.93 + t^6.95 + 4*t^6.97 + 2*t^6.99 + t^7.02 + 2*t^7.04 + 2*t^7.06 + t^7.08 + t^7.3 + t^7.35 + t^7.44 + t^7.46 + t^7.56 + t^7.57 + t^7.63 + t^7.68 + 2*t^7.76 + t^7.77 + t^7.79 + t^7.81 + 3*t^7.85 + 2*t^7.87 + 4*t^7.88 + t^7.9 + t^7.92 + 2*t^7.94 + t^7.96 + 5*t^7.98 + 3*t^7.99 + 2*t^8.01 - 3*t^8.03 + t^8.05 + 2*t^8.07 + t^8.08 + t^8.1 - t^8.14 + t^8.19 + t^8.29 + t^8.3 + t^8.38 + 2*t^8.39 + t^8.4 + t^8.41 + t^8.42 + t^8.49 + t^8.5 + t^8.51 + t^8.52 - t^8.54 - t^8.56 + t^8.62 - t^8.67 + t^8.69 + t^8.71 + t^8.72 + t^8.73 + t^8.74 + 2*t^8.76 + t^8.78 + 2*t^8.8 + 2*t^8.82 + 2*t^8.83 + 2*t^8.85 - 2*t^8.87 + 5*t^8.89 - t^8.91 + 3*t^8.93 + 2*t^8.94 + t^8.95 - 3*t^8.96 + t^8.97 - t^4.01/y - t^5.01/y - t^6.04/y - t^6.88/y - t^6.92/y - t^6.97/y - t^6.99/y - t^7.01/y - t^7.04/y - t^7.88/y + t^7.9/y - t^7.92/y + t^7.94/y + t^8.03/y - t^8.07/y + t^8.78/y + t^8.83/y + t^8.85/y + (2*t^8.87)/y + t^8.91/y + t^8.94/y - t^8.95/y + t^8.96/y + t^8.98/y - t^4.01*y - t^5.01*y - t^6.04*y - t^6.88*y - t^6.92*y - t^6.97*y - t^6.99*y - t^7.01*y - t^7.04*y - t^7.88*y + t^7.9*y - t^7.92*y + t^7.94*y + t^8.03*y - t^8.07*y + t^8.78*y + t^8.83*y + t^8.85*y + 2*t^8.87*y + t^8.91*y + t^8.94*y - t^8.95*y + t^8.96*y + t^8.98*y | t^2.03/g3^5 + (g2*t^2.87)/g1 + (g2*t^2.91)/(g1*g3^6) + g3^6*t^2.96 + g3^3*t^2.98 + t^3. + (g2*t^3.88)/(g1*g3) + g3^2*t^3.99 + t^4.01/g3 + t^4.06/g3^10 + (g1*g3^5*t^4.1)/g2 + (g2*t^4.88)/(g1*g3^2) + (g2*t^4.9)/(g1*g3^5) + (g2*t^4.94)/(g1*g3^11) + g3^4*t^4.98 + g3*t^4.99 + (2*t^5.01)/g3^2 + t^5.03/g3^5 + (g1*g3^4*t^5.1)/g2 + (g1*g2^2*t^5.42)/g3 + (g3^5*t^5.43)/(g1^2*g2) + (g3^11*t^5.52)/(g1*g2^2) + (g1^2*g2*t^5.54)/g3 + (g2^2*t^5.74)/g1^2 + (g2^2*t^5.78)/(g1^2*g3^6) + (g2^2*t^5.82)/(g1^2*g3^12) + (g2*g3^6*t^5.83)/g1 + (g2*g3^3*t^5.85)/g1 + (g2*t^5.87)/g1 + (g2*t^5.89)/(g1*g3^3) + (g2*t^5.91)/(g1*g3^6) + g3^12*t^5.93 + g3^9*t^5.94 + 2*g3^6*t^5.96 + g3^3*t^5.98 - 3*t^6. + t^6.02/g3^3 + t^6.04/g3^6 + t^6.09/g3^15 - (g1*g3^6*t^6.09)/g2 + (g1*g2^2*t^6.42)/g3^2 + (g3^4*t^6.44)/(g1^2*g2) + (g3^10*t^6.53)/(g1*g2^2) + (g1^2*g2*t^6.55)/g3^2 + (g2^2*t^6.75)/(g1^2*g3) + (g2^2*t^6.79)/(g1^2*g3^7) + (g2*g3^5*t^6.84)/g1 + (2*g2*g3^2*t^6.86)/g1 + (g2*t^6.88)/(g1*g3) + (g2*t^6.9)/(g1*g3^4) + (g2*t^6.92)/(g1*g3^7) + (g2*t^6.93)/(g1*g3^10) + g3^8*t^6.95 + (g2*t^6.97)/(g1*g3^16) + 3*g3^5*t^6.97 + 2*g3^2*t^6.99 + t^7.02/g3^4 + (2*t^7.04)/g3^7 + t^7.06/g3^10 + (g1*g3^11*t^7.06)/g2 + (g1*g3^8*t^7.08)/g2 + (g2^3*t^7.3)/g3^3 + t^7.35/(g1^3*g3^3) + (g1*g2^2*t^7.43)/g3^3 - (g3^6*t^7.43)/(g1^2*g2) + (g3^3*t^7.44)/(g1^2*g2) + t^7.46/(g1^2*g2) - g1^2*g2*t^7.54 + (g3^9*t^7.54)/(g1*g2^2) + (g1^2*g2*t^7.56)/g3^3 + (g1^2*g2*t^7.57)/g3^6 + (g3^15*t^7.63)/g2^3 + (g1^3*t^7.68)/g3^3 + (2*g2^2*t^7.76)/(g1^2*g3^2) + (g2^2*t^7.77)/(g1^2*g3^5) + (g2^2*t^7.79)/(g1^2*g3^8) + (g2^2*t^7.81)/(g1^2*g3^11) + (g2^2*t^7.85)/(g1^2*g3^17) + (2*g2*g3^4*t^7.85)/g1 + (2*g2*g3*t^7.87)/g1 + (4*g2*t^7.88)/(g1*g3^2) + (g2*t^7.9)/(g1*g3^5) + (g2*t^7.92)/(g1*g3^8) + (g2*t^7.94)/(g1*g3^11) + g3^10*t^7.94 + g3^7*t^7.96 + 5*g3^4*t^7.98 + 3*g3*t^7.99 + (2*t^8.01)/g3^2 - (3*t^8.03)/g3^5 + t^8.05/g3^8 + t^8.07/g3^11 + (g1*g3^10*t^8.07)/g2 + (g1*g3^7*t^8.08)/g2 + (g1*g3^4*t^8.1)/g2 + t^8.12/g3^20 - (g1*g3*t^8.12)/g2 - (g1*t^8.14)/(g2*g3^2) + (g1^2*g3^10*t^8.19)/g2^2 + (g2^3*t^8.29)/g3 + (g3^5*t^8.3)/g1^3 + g1*g2^2*g3^5*t^8.38 + (2*g3^11*t^8.39)/(g1^2*g2) + g1*g2^2*g3^2*t^8.4 + (g3^8*t^8.41)/(g1^2*g2) + (g1*g2^2*t^8.42)/g3 + (g3^17*t^8.49)/(g1*g2^2) + (g3^14*t^8.5)/(g1*g2^2) + g1^2*g2*g3^5*t^8.51 + g1^2*g2*g3^2*t^8.52 - (g1^2*g2*t^8.54)/g3 - (g3^5*t^8.56)/(g1*g2^2) + (g2^3*t^8.62)/g1^3 + (g2^3*t^8.65)/(g1^3*g3^6) - (g3^11*t^8.65)/g2^3 - (g1^3*t^8.67)/g3 + (g2^3*t^8.69)/(g1^3*g3^12) + (g2^2*g3^6*t^8.71)/g1^2 + (g2^2*g3^3*t^8.72)/g1^2 + (g2^3*t^8.73)/(g1^3*g3^18) + (g2^2*t^8.74)/g1^2 + (2*g2^2*t^8.76)/(g1^2*g3^3) + (g2^2*t^8.78)/(g1^2*g3^6) + (g2^2*t^8.8)/(g1^2*g3^9) + (g2*g3^12*t^8.8)/g1 + (g2^2*t^8.82)/(g1^2*g3^12) + (g2*g3^9*t^8.82)/g1 + (2*g2*g3^6*t^8.83)/g1 + (2*g2*g3^3*t^8.85)/g1 - (2*g2*t^8.87)/g1 + (4*g2*t^8.89)/(g1*g3^3) + g3^18*t^8.89 - (2*g2*t^8.91)/(g1*g3^6) + g3^15*t^8.91 + (g2*t^8.93)/(g1*g3^9) + 2*g3^12*t^8.93 + 2*g3^9*t^8.94 + (g2*t^8.95)/(g1*g3^12) - 3*g3^6*t^8.96 + (g2*t^8.97)/(g1*g3^15) - t^4.01/(g3*y) - t^5.01/(g3^2*y) - t^6.04/(g3^6*y) - (g2*t^6.88)/(g1*g3*y) - (g2*t^6.92)/(g1*g3^7*y) - (g3^5*t^6.97)/y - (g3^2*t^6.99)/y - t^7.01/(g3*y) - t^7.04/(g3^7*y) - (g2*t^7.88)/(g1*g3^2*y) + (g2*t^7.9)/(g1*g3^5*y) - (g2*t^7.92)/(g1*g3^8*y) + (g2*t^7.94)/(g1*g3^11*y) + t^8.03/(g3^5*y) - t^8.07/(g3^11*y) + (g2^2*t^8.78)/(g1^2*g3^6*y) + (g2*g3^6*t^8.83)/(g1*y) + (g2*g3^3*t^8.85)/(g1*y) + (2*g2*t^8.87)/(g1*y) + (g2*t^8.91)/(g1*g3^6*y) + (g3^9*t^8.94)/y - (g2*t^8.95)/(g1*g3^12*y) + (g3^6*t^8.96)/y + (g3^3*t^8.98)/y - (t^4.01*y)/g3 - (t^5.01*y)/g3^2 - (t^6.04*y)/g3^6 - (g2*t^6.88*y)/(g1*g3) - (g2*t^6.92*y)/(g1*g3^7) - g3^5*t^6.97*y - g3^2*t^6.99*y - (t^7.01*y)/g3 - (t^7.04*y)/g3^7 - (g2*t^7.88*y)/(g1*g3^2) + (g2*t^7.9*y)/(g1*g3^5) - (g2*t^7.92*y)/(g1*g3^8) + (g2*t^7.94*y)/(g1*g3^11) + (t^8.03*y)/g3^5 - (t^8.07*y)/g3^11 + (g2^2*t^8.78*y)/(g1^2*g3^6) + (g2*g3^6*t^8.83*y)/g1 + (g2*g3^3*t^8.85*y)/g1 + (2*g2*t^8.87*y)/g1 + (g2*t^8.91*y)/(g1*g3^6) + g3^9*t^8.94*y - (g2*t^8.95*y)/(g1*g3^12) + g3^6*t^8.96*y + g3^3*t^8.98*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60950 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.475 | 1.6862 | 0.8747 | [X:[1.3239], M:[1.0, 0.9859, 0.6901], q:[0.4929, 0.4929], qb:[0.5071, 0.479], phi:[0.338]] | t^2.07 + 2*t^2.92 + t^2.96 + 2*t^3. + t^3.93 + t^3.97 + 2*t^4.01 + t^4.14 + 2*t^4.94 + 2*t^4.99 + 3*t^5.03 + 2*t^5.07 + t^5.41 + 2*t^5.45 + t^5.49 + 3*t^5.83 + 2*t^5.87 + 4*t^5.92 + 2*t^5.96 - 2*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57619 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.455 | 1.6468 | 0.8836 | [X:[1.3281], M:[0.9714, 0.9922], q:[0.4816, 0.5103], qb:[0.5184, 0.4741], phi:[0.3359]] | t^2.87 + t^2.91 + t^2.95 + t^2.98 + t^3. + t^3.87 + t^3.96 + t^3.98 + t^4.01 + t^4.09 + t^4.88 + t^4.97 + t^5.02 + t^5.1 + t^5.41 + t^5.43 + t^5.51 + t^5.54 + t^5.73 + t^5.78 + t^5.82 + t^5.83 + t^5.84 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + 2*t^5.95 + t^5.98 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |