Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60950 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.475 1.6862 0.8747 [X:[1.3239], M:[1.0, 0.9859, 0.6901], q:[0.4929, 0.4929], qb:[0.5071, 0.479], phi:[0.338]] [X:[[0, 2]], M:[[0, 0], [0, 3], [0, -5]], q:[[-1, 6], [-1, 6]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ ${}M_{1}^{2}$ -2 t^2.07 + 2*t^2.92 + t^2.96 + 2*t^3. + t^3.93 + t^3.97 + 2*t^4.01 + t^4.14 + 2*t^4.94 + 2*t^4.99 + 3*t^5.03 + 2*t^5.07 + t^5.41 + 2*t^5.45 + t^5.49 + 3*t^5.83 + 2*t^5.87 + 4*t^5.92 + 2*t^5.96 - 2*t^6. + t^6.04 + t^6.08 + t^6.21 + t^6.42 + 2*t^6.46 + t^6.51 + 2*t^6.85 + 3*t^6.89 + 6*t^6.93 + 4*t^6.97 + t^7.01 + 2*t^7.06 + 2*t^7.1 + 2*t^7.14 + t^7.35 + 3*t^7.48 + 2*t^7.52 + t^7.56 + t^7.61 + 5*t^7.86 + 4*t^7.9 + 11*t^7.94 + 6*t^7.99 + 5*t^8.03 - 2*t^8.07 + t^8.15 + t^8.28 + 2*t^8.32 + 5*t^8.37 + 4*t^8.41 + t^8.45 - t^8.49 - 2*t^8.53 - t^8.58 + 4*t^8.75 + 3*t^8.79 + 6*t^8.83 + 6*t^8.87 - 4*t^8.92 + 5*t^8.96 - t^4.01/y - t^5.03/y - t^6.08/y - (2*t^6.93)/y - t^6.97/y - (2*t^7.01)/y - t^7.1/y - t^7.94/y + t^7.99/y - t^8.03/y + (2*t^8.07)/y - t^8.15/y + t^8.83/y + (2*t^8.87)/y + (4*t^8.92)/y + t^8.96/y - t^4.01*y - t^5.03*y - t^6.08*y - 2*t^6.93*y - t^6.97*y - 2*t^7.01*y - t^7.1*y - t^7.94*y + t^7.99*y - t^8.03*y + 2*t^8.07*y - t^8.15*y + t^8.83*y + 2*t^8.87*y + 4*t^8.92*y + t^8.96*y t^2.07/g2^5 + 2*g2^6*t^2.92 + g2^3*t^2.96 + 2*t^3. + g2^5*t^3.93 + g2^2*t^3.97 + (2*t^4.01)/g2 + t^4.14/g2^10 + 2*g2^4*t^4.94 + 2*g2*t^4.99 + (3*t^5.03)/g2^2 + (2*t^5.07)/g2^5 + (g1^3*t^5.41)/g2^7 + (2*g2^17*t^5.45)/g1^3 + (g1^3*t^5.49)/g2^13 + 3*g2^12*t^5.83 + 2*g2^9*t^5.87 + 4*g2^6*t^5.92 + 2*g2^3*t^5.96 - 2*t^6. + t^6.04/g2^3 + t^6.08/g2^6 + t^6.21/g2^15 + (g1^3*t^6.42)/g2^8 + (2*g2^16*t^6.46)/g1^3 + (g1^3*t^6.51)/g2^14 + 2*g2^11*t^6.85 + 3*g2^8*t^6.89 + 6*g2^5*t^6.93 + 4*g2^2*t^6.97 + t^7.01/g2 + (2*t^7.06)/g2^4 + (2*t^7.1)/g2^7 + (2*t^7.14)/g2^10 + (g1^3*t^7.35)/g2^3 + (g1^3*t^7.44)/g2^9 - (g2^18*t^7.44)/g1^3 - (g1^3*t^7.48)/g2^12 + (4*g2^15*t^7.48)/g1^3 + (g1^3*t^7.52)/g2^15 + (g2^12*t^7.52)/g1^3 + (g1^3*t^7.56)/g2^18 + (g1^3*t^7.61)/g2^21 + 5*g2^10*t^7.86 + 4*g2^7*t^7.9 + 11*g2^4*t^7.94 + 6*g2*t^7.99 + (5*t^8.03)/g2^2 - (2*t^8.07)/g2^5 + t^8.15/g2^11 + t^8.28/g2^20 + (2*g1^3*t^8.32)/g2 + (g1^3*t^8.37)/g2^4 + (4*g2^23*t^8.37)/g1^3 + (2*g1^3*t^8.41)/g2^7 + (2*g2^20*t^8.41)/g1^3 + (g1^3*t^8.45)/g2^10 - (g1^3*t^8.49)/g2^13 - (2*g2^11*t^8.53)/g1^3 - (g1^3*t^8.58)/g2^19 + 4*g2^18*t^8.75 + 3*g2^15*t^8.79 + 6*g2^12*t^8.83 + 6*g2^9*t^8.87 - 4*g2^6*t^8.92 + 5*g2^3*t^8.96 - t^4.01/(g2*y) - t^5.03/(g2^2*y) - t^6.08/(g2^6*y) - (2*g2^5*t^6.93)/y - (g2^2*t^6.97)/y - (2*t^7.01)/(g2*y) - t^7.1/(g2^7*y) - (g2^4*t^7.94)/y + (g2*t^7.99)/y - t^8.03/(g2^2*y) + (2*t^8.07)/(g2^5*y) - t^8.15/(g2^11*y) + (g2^12*t^8.83)/y + (2*g2^9*t^8.87)/y + (4*g2^6*t^8.92)/y + (g2^3*t^8.96)/y - (t^4.01*y)/g2 - (t^5.03*y)/g2^2 - (t^6.08*y)/g2^6 - 2*g2^5*t^6.93*y - g2^2*t^6.97*y - (2*t^7.01*y)/g2 - (t^7.1*y)/g2^7 - g2^4*t^7.94*y + g2*t^7.99*y - (t^8.03*y)/g2^2 + (2*t^8.07*y)/g2^5 - (t^8.15*y)/g2^11 + g2^12*t^8.83*y + 2*g2^9*t^8.87*y + 4*g2^6*t^8.92*y + g2^3*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60481 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4758 1.6873 0.8746 [X:[1.3292], M:[0.9697, 0.9938, 0.677], q:[0.4816, 0.5119], qb:[0.5184, 0.4756], phi:[0.3354]] t^2.03 + t^2.87 + t^2.91 + t^2.96 + t^2.98 + t^3. + t^3.88 + t^3.99 + t^4.01 + t^4.06 + t^4.1 + t^4.88 + t^4.9 + t^4.94 + t^4.98 + t^4.99 + 2*t^5.01 + t^5.03 + t^5.1 + t^5.42 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail